A high lift low pressure turbine (LPT) profile designated L2A is used as a test bed for studying the origin of endwall mixing loss and the role of vortical structures in loss development. It is shown analytically and experimentally that the mixing forces within the endwall wake can be decoupled into either mean flow or turbulent forces and can be further classified as either reversible or irreversible. Among the irreversible forces, mean flow shear is negligible compared to turbulent shear, suggesting that turbulence dissipation is the dominant cause of loss generation. As a result, the mean flow components of the vortical structures do not generate significant mixing losses. Rather than mixing effects, the mean flow of the vortices causes the suction surface boundary layer to separate inside the passage, thereby generating the large low energy regions typical of endwall flows. Losses are generated as the low energy regions mix out. This vortex separation effect is demonstrated with an experiment using a profile fence and pressure surface modification near the endwall. The findings in this paper suggest that profile modifications near the endwall that suppress flow separation may provide loss reductions additive to modifications aimed at weakening vortical structures, such as endwall contouring.

References

References
1.
McQuilling
,
M. W.
,
2007
, “
Design and Validation of a High Lift Low-Pressure Turbine Blade
,”
Ph.D. thesis
,
Wright State University
,
Dayton, OH
.
2.
Praisner
,
T. J.
,
Grover
,
E. A.
,
Knezevici
,
D. C.
,
Popovic
,
I.
,
Sjolander
,
S. A.
,
Clark
,
J. P.
, and
Sondergaard
,
R.
,
2008
, “
Toward the Expansion of Low-Pressure-Turbine Airfoil Design Space
,”
ASME
Paper No. GT2008-50898.10.1115/GT2008-50898
3.
Knezevici
,
D. C.
,
Sjolander
,
S. A.
,
Praisner
,
T. J.
,
Allen-Bradley
,
E.
, and
Grover
,
E. A.
,
2009
, “
Measurements of Secondary Losses in a High-Lift Front-Loaded Turbine Cascade With the Implementation of Non-Axisymmetric Endwall Contouring
,”
ASME
Paper No. GT2009-59677. 10.1115/GT2009-59677
4.
Moore
,
J.
, and
Adhye
,
R. Y.
,
1985
, “
Secondary Flows and Losses Downstream of a Turbine Cascade
,”
ASME J. Eng. Gas Turbines Power
,
107
, pp.
961
968
.10.1115/1.3239842
5.
MacIsaac
,
G. D.
,
Sjolander
,
S. A.
, and
Praisner
,
T. J.
,
2010
, “
Measurements of Losses and Reynolds Stresses in the Secondary Flow Downstream of a Low-Speed Linear Turbine Cascade
,”
ASME
Paper No. GT2010-22727. 10.1115/GT2010-22727
6.
Gregory-Smith
,
D. G.
,
Walsh
,
J. A.
,
Graves
,
C. P.
, and
Fulton
,
K. P.
,
1988
, “
Turbulence Measurements and Secondary Flows in a Turbine Rotor Cascade
,”
ASME J. Turbomach.
,
110
, pp.
479
485
.10.1115/1.3262221
7.
Moore
,
J.
,
Shaffer
,
D. M.
, and
Moore
,
J. G.
,
1987
, “
Reynolds Stresses and Dissipation Mechanisms Downstream of a Turbine Cascade
,”
ASME J. Turbomach.
,
109
, pp.
258
267
.10.1115/1.3262096
8.
Hinze
,
J. O.
,
1975
,
Turbulence
,
2nd ed.
,
McGraw-Hill
,
New York
.
9.
Panton
,
R. L.
,
1996
,
Incompressible Flow
,
2nd ed.
,
John Wiley & Sons
,
New York
.
10.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
1st ed.
,
Cambridge University Press
,
Cambridge, UK
.
11.
Narasimha
,
R.
, and
Prasad
,
S. N.
,
1994
, “
Leading Edge Shape for Flat Plate Boundary Layer Studies
,”
Exp. Fluids
,
17
(
5
), pp.
358
360
.10.1007/BF01874418
12.
Lyall
,
M. E.
,
King
,
P. I.
,
Sondergaard
,
R.
,
Clark
,
J. P.
, and
McQuilling
,
M. W.
,
2011
, “
An Investigation of Reynolds Lapse Rate for Highly Loaded Low Pressure Turbine Airfoils With Forward and Aft Loading
,”
ASME
Paper No. GT2011-46328.10.1115/GT2011-46328
13.
Lekakis
,
I. C.
,
Adrian
,
R. J.
, and
Jones
,
B. G.
,
1989
, “
Measurement of Velocity Vectors With Orthogonal and Non-Orthogonal Triple-Sensor Probes
,”
Exp. Fluids
,
7
, pp.
228
240
.10.1007/BF00198002
14.
Gieseke
,
T. J.
, and
Guezennec
,
Y. G.
,
1993
, “
An Experimental Approach to the Calibration and Use of Triple Hot-Wire Probes
,”
Exp. Fluids
,
14
, pp.
305
315
.10.1007/BF00189488
15.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
16.
Tannehill
,
J. C.
,
Anderson
,
D. A.
, and
Pletcher
,
R. H.
,
1997
,
Computational Fluid Mechanics and Heat Transfer
,
2nd ed.
,
Taylor & Francis
,
Philadelphia, PA
.
17.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
, pp.
3
17
.10.1016/0894-1777(88)90043-X
18.
Langston
,
L. S.
,
2001
, “
Secondary Flows in Axial Turbines—A Review
,”
Ann. N.Y. Acad. Sci.
,
934
, pp.
11
26
.10.1111/j.1749-6632.2001.tb05839.x
19.
Hodson
,
H. P.
, and
Dominy
,
R. G.
,
1987
, “
Three-Dimensional Flow in a Low-Pressure Turbine Cascade at its Design Condition
,”
ASME J. Turbomach.
,
109
, pp.
177
185
.10.1115/1.3262083
20.
Zoric
,
T.
,
Popovic
,
I.
,
Sjolander
,
S. A.
,
Praisner
,
T.
, and
Grover
,
E.
,
2007
, “
Comparative Investigation of Three Highly Loaded LP Turbine Airfoils: Part I—Measured Profile and Secondary Losses at Design Incidence
,”
ASME
Paper No. GT2007-27537. 10.1115/GT2007-27537
21.
Prümper
,
H.
,
1972
, “
Application of Boundary Layer Fences in Turbomachinery
,” Paper No. AGARD-AG-164, pp. 311–331.
22.
Blanco
,
E.
,
Hodson
,
H. P.
,
Vazquez
,
R.
, and
Torre
,
D.
,
2003
, “
Influence of the State of the Inlet Endwall Boundary Layer on the Interaction Between Pressure Surface Separation and Endwall Flows
,”
Proc. Inst. Mech. Eng., Part A
,
217
, pp.
433
441
.10.1243/095765003322315496
23.
Bloxham
,
M. J.
,
2010
, “
A Global Approach to Turbomachinery Flow Control: Loss Reduction Using Endwall Suction and Midspan Vortex Generator Jet Blowing
,”
Ph.D. thesis
,
Ohio State University
,
Columbus, OH
.
You do not currently have access to this content.