The spoiling effects of rim seal flow are studied at the Large Scale Turbine Rig (LSTR) at Technische Universität Darmstadt. Detailed flow field measurements and efficiency measurements were performed for various ingress and egress setups and will be presented in this paper. Efficiency measurements show an efficiency decrease as the rim seal mass flow is increased. Five hole probe measurements upstream and downstream of the second stator row show that an increasing rim seal mass flow leads to an increased pressure loss across the stator, to altered incidence angles and to an intensification of secondary flow structures within the lower 50% span. Static pressure taps at the stator profile primarily show altered aerodynamic loading with increased rim seal air. In addition, the end wall profile pressure was measured at the stator 2 hub. It can be seen that seal air injection causes increased pressure fluctuations on the platform. Temperature measurements with a temperature difference between rim seal and main annulus flow show that rim seal air primarily enters the passage vortex.

References

References
1.
McLean
,
C.
,
Camci
,
C.
, and
Glezer
,
B.
,
2001
, “
Mainstream Aerodynamic Effects Due to Wheelspace Coolant Injection in a High Pressure Turbine Stage: Part I—Aerodynamic Measurements in the Stationary Frame
,”
ASME J. Turbomach.
,
123
, pp.
697
703
.10.1115/1.1397303
2.
McLean
,
C.
,
Camci
,
C.
, and
Glezer
,
B.
,
2001
, “
Mainstream Aerodynamic Effects Due to Wheelspace Coolant Injection in a High Pressure Turbine Stage: Part II—Aerodynamic Measurements in the Rotational Frame
,”
ASME J. Turbomach.
,
123
, pp.
687
696
.10.1115/1.1401026
3.
Schuepbach
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
,
Germain
,
T.
,
Raab
,
I.
, and
Gier
,
J.
,
2010
, “
Effects of Suction and Injection Purge-Flow on the Secondary Flow Structures of a High-Work Turbine
,”
ASME J. Turbomach.
,
132
, p.
021021
.10.1115/1.4000485
4.
Ong
,
J. H. P.
,
Miller
,
R. J.
, and
Uchida
,
S.
,
2012
, “
The Effect of Coolant Injection on the Endwall Flow of a High Pressure Turbine
,”
ASME J. Turbomach.
,
134
, p.
051003
.10.1115/1.4003838
5.
Jenny
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
,
Brettschneider
,
M.
, and
Gier
,
J.
,
2012
, “
A Low Pressure Turbine With Profiled End Walls and Purge Flow Operating With a Pressure Side Bubble
,”
ASME J. Turbomach.
,
134
, p.
061038
.10.1115/1.4006303
6.
Schuepbach
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
, and
Gier
,
J.
,
2011
, “
Influence of Rim Seal Purge Flow on the Performance of an Endwall-Profiled Axial Turbine
,”
ASME J. Turbomach.
,
133
, p.
021011
.10.1115/1.4000578
7.
Jenny
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
,
Brettschneider
,
M.
,
Gier
,
J.
, and
Engel
,
K.
,
2011
, “
Low-Pressure Turbine End Wall Design Optimisation and Experimental Verification in the Presence of Purge Flow
,”
20th International Symposium on Airbreathing Engines, Gothenburgh, Sweden, September 12-16, Paper No. ISABE-2011-1717
.
8.
Gier
,
J.
,
Stubert
,
B.
,
Brouillet
,
B.
, and
de Vito
,
L.
,
2005
, “
Interaction of Shroud Leakage Flow and Main Flow in a Three-Stage LP Turbine
,”
ASME J. Turbomach.
,
127
, pp.
649
658
.10.1115/1.2006667
9.
Erickson
,
R. D.
,
Simon
,
T. W.
,
Zhang
,
L.
, and
Moon
,
H.-K.
,
2011
, “
Experimental Investigation of Disc Cavity Leakage Flow and Hub Endwall Contouring in a Linear Rotor Cascade
,” Proceedings of the
ASME Turbo Expo 2011, Vancouver, Canada, June 6–10
,
ASME
Paper No. GT2011-46700.10.1115/GT2011-46700
10.
Andreini
,
A.
,
Da Soghe
,
R.
,
Facchini
,
B.
, and
Zecchi
,
S.
,
2008
, “
Turbine Stator Well CFD Studies: Effects of Cavity Cooling Air Flow
,”
Proceedings of the ASME Turbo Expo 2008, Berlin, June 9–13
,
ASME
Paper No. GT2008-51067.10.1115/GT2008-51067
11.
Pau
,
M.
,
Paniagua
,
G.
,
Delhaye
,
D.
,
de la Loma
,
A.
, and
Ginibre
,
P.
,
2010
, “
Aerothermal Impact of Stator-Rim Purge Flow and Rotor-Platform Film Cooling on a Transonic Turbine Stage
,”
ASME J. Turbomach.
,
132
, p.
021006
.10.1115/1.3142859
12.
Pau
,
M.
, and
Paniagua
,
G.
,
2010
, “
Investigation of the Flow Field on a Transonic Turbine Nozzle Guide Vane With Rim Seal Cavity Flow Ejection
,”
ASME J. Fluids Eng.
,
132
, p.
111101
.10.1115/1.4002887
13.
Balasubramanian
,
J.
,
Junnarkar
,
N.
,
Zhou
,
D. W.
,
Roy
,
R. P.
,
Kim
,
Y. W.
, and
Moon
,
H. K.
,
2011
, “
Experiments on Aft-Disk Cavity Ingestion in a Model 1.5-Stage Axial-Flow Turbine
,”
Proceedings of the ASME Turbo Expo 2011, Vancouver, Canada
, June 6–10,
ASME
Paper No. GT2011-45895.10.1115/GT2011-45895
14.
Schuler
,
P.
,
Kurz
,
W.
,
Dullenkopf
,
K.
, and
Bauer
,
H.-J.
,
2010
, “
The Influence of Different Rim Seal Geometries on Hot-Gas Ingestion and Total Pressure Loss in a Low-Pressure Turbine
,”
Proceedings of the ASME Turbo Expo 2010, Glasgow, UK, June 14–18
,
ASME
Paper No. GT2010-22205.10.1115/GT2010-22205
15.
Schuler
,
P.
,
Dullenkopf
,
K.
, and
Bauer
,
H.-J.
,
2011
, “
Investigation of the Influence of Different Rim Seal Geometries in a Low Pressure Turbine
,”
Proceedings of the ASME Turbo Expo 2011, Vancouver, Canada
, June 6–10,
ASME
Paper No. GT2011-45682.10.1115/GT2011-45682
16.
Schrewe
,
S.
,
Linker
,
C.
,
Krichbaum
,
A.
, and
Schiffer
,
H.-P.
,
2011
, “
Measurements of Rim Seal Mixing Processes in an Axial Two Stage Turbine
,”
20th International Symposium on Airbreathing Engines, Gothenburgh, Sweden, September 12–16, Paper No. ISABE-2011-1720
.
17.
Johnson
,
B. V.
,
Jakoby
,
R.
,
Bohn
,
D. E.
, and
Cunat
,
D.
,
2009
, “
A Method for Estimating the Influence of Time-Dependent Vane and Blade Pressure Fields on Turbine Rim Seal Ingestion
,”
ASME J. Turbomach.
,
131
, p.
021005
.10.1115/1.2950053
18.
Bohn
,
D. E.
,
Decker
,
A.
,
Ma
,
H.
, and
Wolf
,
M.
,
2003
, “
Influence of Sealing Air Mass Flow on the Velocity Distribution In and Inside the Rim Seal of the Upstream Cavity of a 1.5-Stage-Turbine
,”
Proceedings of the ASME Turbo Expo 2003, Atlanta
, GA, June 16–19,
ASME
Paper No. GT2003-38459.10.1115/GT2003-38459
You do not currently have access to this content.