The flow field and heat transfer in the internal cooling system of gas turbines can be modeled using rotating-disk systems with axial throughflow. Because of the complexity of these flows, in which buoyancy-induced phenomena are of the utmost importance, numerical studies are notoriously difficult to perform and need extensive experimental validation. J.M. Owen proposed using the maximum entropy production (MEP) principle as a possible means of simplifying numerical computations for these complex flows since this would enable us to use stationary numerical calculations to predict the flow field. Simply said, this theory is based on the heat flux out of the cavity. In this numerical study, the computed Nusselt numbers on the disk walls inside an open rotating cavity with a Rayleigh number of approximately 4.97 × 108. This is representative of the lower values encountered in the flow inside rotating cavities. It is shown that, as predicted by Owen, the flow is stable when the heat transfer out of the cavity is maximized, or, conversely, the system is unstable when the heat transfer is minimized. Furthermore, it is proven that the level of the Nusselt number plays an important role for the change between the number of vortex pairs in the flow as well.

References

References
1.
Owen
,
J. M.
,
2007
, “
Modelling Internal Air Systems in Gas Turbine Engines
,”
J. Aerosp. Power
,
22
(
4
), pp.
505
521
.
2.
Farthing
,
P. R.
,
Long
,
C. A.
,
Owen
,
J. M.
, and
Pincombe
,
J. R.
,
1992
, “
Rotating Cavity With Axial Throughflow of Cooling Air: Flow Structure
,”
ASME J. Turbomach.
,
114
, pp.
237
246
.10.1115/1.2927991
3.
Bohn
,
D.
,
Deuker
,
E.
,
Emunds
,
R.
, and
Gorzelitz
,
V.
,
1995
, “
Experimental and Theoretical Investigations of Heat Transfer in Closed Gas Filled Rotating Annuli
,”
ASME J. Turbomach.
,
117
, pp.
175
183
.10.1115/1.2835635
4.
Owen
,
J. M.
,
Abrahamsson
,
H.
, and
Linblad
,
K.
,
2007
, “
Buoyancy-Induced Flow in Open Rotating Cavities
,”
ASME J. Eng. Gas Turb. Power
,
129
, pp.
893
900
.10.1115/1.2719260
5.
Bohn
,
D.
,
Ren
,
J.
, and
Tümmers
,
C.
,
2006
, “
Investigation of the Unstable Flow Structure in a Rotating Cavity
,”
ASME
Paper No. GT2006-90494.10.1115/GT2006-90494
6.
Owen
,
J. M.
, and
Powell
,
J.
,
2006
, “
Buoyancy-Induced Flow in a Heated Rotating Cavity
,”
ASME J. Eng. Gas Turb. Power
,
128
, pp.
128
134
.10.1115/1.2032451
7.
Tian
,
S.
,
Tao
,
Z.
,
Ding
,
S.
, and
Xu
,
G.
,
2004
, “
Investigation of Flow and Heat Transfer Instabilities in a Rotating Cavity With Axial Throughflow of Cooling Air
,”
ASME
Paper No. GT2004-53525.10.1115/GT2004-53525
8.
Bohn
,
D.
,
Bouzidi
,
F.
,
Kitanina
,
E. E.
,
Ris
,
V. V.
,
Smirnov
,
E. M.
,
Burkhardt
,
C.
, and
Wolff
,
M. W.
,
2002
, “
Numerical and Experimental Investigations of the Air Flow and Heat Transfer in Rotating Cavities
,”
Proceedings of the 9th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC), Honolulu, HI, February 10-14
, Paper No. HT-ABS-35.
9.
Owen
,
J. M.
,
2010
, “
Thermodynamic Analysis of Buoyancy-Induced Flow in Rotating Cavities
,”
ASME J. Turbomach.
,
132
, p.
031006
.10.1115/1.2988170
10.
Bohn
,
D.
and
Ren
,
J.
,
2007
, Influence of Laminar and Turbulent Viscosity on the Unstable Flow Pattern in a Rotating Cavity, Proceedings of the 7th European Turbomachinery Conference (ETC), Athens, Greece, March 5-7, Paper No. ETC7-135.
11.
Bohn
,
D.
,
Deutsch
,
G.
,
Simon
,
B.
, and
Burkhardt
,
C.
,
2000
, “
Flow Visualisation in a Rotating Cavity With Axial Throughflow
,” ASME Paper No. 2000-GT-280.
12.
Eberle
,
A.
,
Schmatz
,
M. A.
, and
Bissinger
,
N.
,
1990
, “
Generalized Flux Vectors for Hypersonic Shock-Capturing
,” AIAA Paper No. 90-0390.
13.
Schmatz
,
M. A.
,
1988
, “
Three-Dimensional Viscous Flow Simulations Using an Implicit Relaxation Scheme
,”
Numerical Simulation of Compressible Viscous-Flow Aerodynamics
,
W.
Kordulla
, ed.,
Vieweg
,
Brunswick, Germany
, pp.
226
242
.
14.
Anderson
,
W. K.
,
Thomas
,
J. L.
, and
van Leer
,
B.
,
1985
, “
A Comparison of Finite Volume Flux Vector Splitting for the Euler Equations
,” AIAA Paper No. 85-0122.
15.
Owen
,
J. M.
, and
Rogers
,
R. H.
,
1995
,
Flow and Heat Transfer in Rotating-Disc Systems
, Vol. 2,
Research Studies Press Ltd.
,
Taunton, UK
.
16.
Long
,
C. A.
, and
Childs
,
P. R. N.
,
2007
, “
The Effect of Inlet Conditions on the Flow and Heat Transfer in a Multiple Rotating Cavity With Axial Throughflow
,”
J. Aerosp. Power
,
22
(
5
), pp.
683
693
.
17.
Bohn
,
D.
,
Bonhoff
,
B.
,
Schönenborn
,
H.
, and
Wilhelmi
,
H.
,
1995
, “
Validation of a Numerical Model for the Coupled Simulation of Fluid Flow and Diabatic Walls With Application to Film-Cooled Turbine Blades
,”
VDI-Berichte
,
1186
, pp.
259
272
.
18.
Bohn
,
D.
,
Hötker
,
S.
,
Tadesse
,
H.
, and
Wolff
,
A.
,
2010
, “
Wärmeübergang in rotierenden Kammern (Teilprojekt 1.3.6)
,” Abschlussbericht zum COOREFF-T Forschungsvorhaben Strömungs- und Wärmeübergangsuntersuchungen in einem rotierenden Einkammermodell.
19.
Long
,
C. A.
, and
Tucker
,
P. G.
,
1994
, “
Shroud Heat Transfer Measurements From a Rotating Cavity With an Axial Throughflow of Air
,”
ASME J. Turbomach.
,
116
, pp.
525
534
.10.1115/1.2929441
20.
Farthing
,
P. R.
,
Long
,
C. A.
,
Owen
,
J. M.
, and
Pincombe
,
J. R.
,
1992
, “
Rotating Cavity With Axial Throughflow of Cooling Air: Heat Transfer
,”
ASME J. Turbomach.
,
114
, pp.
229
236
.10.1115/1.2927990
You do not currently have access to this content.