This paper summarizes the experimental results of a comprehensive study on the heat transfer and aerodynamic losses of a highly loaded turbine blade with surface roughness. A few hundred test cases conducted at several Reynolds numbers, freestream turbulence levels, and different deterministic roughness geometry have been examined. Some of these results have been published in two previous papers, showing a strong effect of roughness on laminar-turbulent bypass transition on the airfoil suction side. Beside roughness height, roughness anisotropy has turned out to be one of the major influencing factors. The airfoil heat transfer distribution of these measurements is used for detecting the transition onset. Additionally, further transition onset data from the literature is reevaluated. Thus, important roughness (geometry) parameters are identified and a new correlation for the transition onset is deduced, including roughness parameters along with freestream turbulence. Moreover, a method to extract the relevant roughness parameters from realistic surface roughness is presented. Additional heat transfer and aerodynamic measurements are conducted for two different real surface roughness types. Calculations with a 2D-boundary layer code on these surfaces are presented in order to validate the new model.

References

References
1.
Abu-Ghannam
,
B. J.
, and
Shaw
,
R.
,
1980
, “
Natural Transition of Boundary-Layers—The Effects of Turbulence, Pressure Gradient and Flow History
,”
J. Mech. Eng. Sci.
,
22
, pp.
213
228
.10.1243/JMES_JOUR_1980_022_043_02
2.
Schiele
,
R.
,
Kaufmann
,
F.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1999
, “
Calculating Turbulent and Transitional Boundary-Layers With Two-Layer Models of Turbulence
,”
Engineering Turbulence Modelling and Experiments 4
, Proceedings of the 4th International Symposium on Engineering Turbulence Modelling and Measurements Ajaccio, Corsica, France, May 24–26, pp.
543
554
. Available at: http://www.sciencedirect.com/science/book/9780080433288
3.
Schiele
,
R
.,
1999
, “
Die transitionale Grenzschicht an Gasturbinenschaufeln: Experimentelle Untersuchungen und Entwicklung eines neuen Verfahrens zur numerischen Beschreibung des laminar-turbulenten Umschlags
,”
Forschungsberichte aus dem Institut für Thermische Strömungsmaschinen
, Vol.
10
,
Logos
,
Berlin
.
4.
Mayle
,
R. E.
,
1991
, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
,
113
, pp.
509
537
.10.1115/1.2929110
5.
Stripf
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2005
, “
Surface Roughness Effects on External Heat Transfer of a HP Turbine Vane
,”
ASME J. Turbomach.
,
127
, pp.
200
208
.10.1115/1.1811101
6.
Stripf
,
M.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
,
2007
, “
Roughness and Secondary Flow Effects on Turbine Vane External Heat Transfer
,”
J. Propul. Power
,
23
(
2
), pp.
283
291
.10.2514/1.23062
7.
Stripf
,
M.
,
2007
, “
Einfluss der Oberflaechenrauigkeit auf die transitionale Grenzschicht an Gasturbinenschaufeln
,”
Forschungsberichte aus dem Institut für Thermische Strömungsmaschinen
, Vol.
38
,
Logos
,
Berlin
.
8.
Stripf
,
M.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
,
2008
, “
Modeling of Rough Wall Boundary Layer Transition and Heat Transfer on Turbine Airfoils
,”
ASME J. Turbomach.
,
130
, p.
021003
.10.1115/1.2750675
9.
Boyle
,
R. J.
, and
Stripf
,
M.
,
2009
, “
Simplified Approach to Predicting Rough Surface Transition
,”
ASME J. Turbomach.
,
131
(
3
), pp.
041020-1–11
.10.1115/1.3072521
10.
Stripf
,
M.
,
Schulz
,
A.
,
Bauer
,
H.-J.
, and
Wittig
,
S.
,
2009
, “
Extended Models for Transitional Rough Wall Boundary Layers With Heat Transfer—Part I: Model Formulations
,”
ASME J. Turbomach.
,
131
(
3
), p.
031016
.10.1115/1.2992511
11.
Stripf
,
M.
,
Schulz
,
A.
,
Bauer
,
H.-J.
, and
Wittig
,
S.
,
2009
, “
Extended Models for Transitional Rough Wall Boundary Layers With Heat Transfer—Part II: Model Validation and Benchmarking
,”
ASME J. Turbomach.
,
131
(
3
), p.
031017
.10.1115/1.2992512
12.
Langtry
,
R. B.
, and
Menter
,
F. R.
,
2009
, “
Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes
,”
AIAA J.
,
47
(
12
), pp.
2894
2906
.10.2514/1.42362
13.
Lorenz
,
M.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
,
2012
, “
Experimental Study of Surface Roughness Effects on a Highly Loaded Turbine Airfoil in a Linear Cascade—Part I: Heat Transfer
,”
ASME J. Turbomach.
,
134
(
4
), p.
041006
.10.1115/1.4003234
14.
Lorenz
,
M.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
,
2012
, “
Experimental Study of Surface Roughness Effects on a Highly Loaded Turbine Airfoil in a Linear Cascade—Part II: Aerodynamic Losses
,”
ASME J. Turbomach.
,
134
(
4
), p.
041007
.10.1115/1.4003656
15.
Waigh
,
D. R.
, and
Kind
,
R. J.
,
1998
, “
Improved Aerodynamic Characterization of Regular Three-Dimensional Roughness
,”
AIAA J.
,
36
(
6
), pp.
1117
1119
.10.2514/2.491
16.
Bons
,
J. P.
,
Taylor
,
R. P.
,
McClain
,
S. T.
, and
Rivir
,
R. B.
,
2001
, “
The Many Faces of Turbine Surface Roughness
,”
ASME J. Turbomach.
,
123
, pp.
739
748
.10.1115/1.1400115
17.
McClain
,
S. T.
,
Hodge
,
B. K.
, and
Bons
,
J. P.
,
2003
, “
Predicting Skin Friction for Turbulent Flow Over Randomly-Rough Surfaces Using the Discrete-Element Method: Part I—Surface Characterization
,”
Joint Fluids Engineering Conference
,
Honolulu
,
Hawaii
, Paper No. FEDSM2003-45411.
18.
McClain
,
S. T.
,
Hodge
,
B. K.
, and
Bons
,
J. P.
,
2003
, “
Predicting Skin Friction for Turbulent Flow Over Randomly-Rough Surfaces Using the Discrete-Element Method: Part II—Skin Friction Validation
,”
Joint Fluids Engineering Conference
,
Honolulu
,
Hawaii
, Paper No. FEDSM2003-45412.
19.
Gibbings
,
J. C.
, and
Al-Shukri.
S. M.
,
1997
, “
Effect of Sandpaper Roughness and Stream Turbulence on the Laminar Layer and Its Transition
,”
Aeronaut. J.
,
101
, pp.
17
24
. Available at: http://cat.inist.fr/?aModele=afficheN&cpsidt=2552210
20.
Taylor
,
R. P.
,
Coleman
,
H. W.
, and
Hodge
,
B. K.
,
1984
, “
A Discrete Element Prediction Approach for Turbulent Flow Over Rough Surfaces
,”
Mississippi State University, Report No. TFD-84-1
.
21.
Tarada
,
F. H. A.
,
1987
, “
Heat Transfer to Rough Turbine Blading
,” Ph.D. thesis, University of Sussex,
England
.
22.
McClain
,
S. T.
,
Collins
,
S. P.
,
Hodge
,
B. K.
, and
Bons
,
J. P.
,
2006
, “
The Importance of the Mean Elevation in Predicting Skin Friction for Flow Over Closely Packed Surface Roughness
,”
ASME J. Fluids Eng.
,
128
, pp.
579
586
.10.1115/1.2175164
23.
Sigal
,
A.
, and
Danberg
,
J. E.
,
1990
, “
New Correlation of Roughness Density Effect on the Turbulent Boundary Layer
,”
AIAA J.
,
28
(
3
), pp.
554
556
.10.2514/3.10427
24.
Byvaltsev
,
P. M.
, and
Nagashima
,
T.
,
1998
, “
Correlation of Numerical and Experimental Heat Transfer Data at the Turbine Blade Surface
,”
JSME Int. J., Ser. B
,
41
(
1
), pp.
191
199
.10.1299/jsmeb.41.191
25.
Jischa
,
M.
,
1982
,
Konvektiver Impuls-, Wärme- und Stoffaustausch
,
Vieweg
,
Braunschweig/Wiesbaden
.
You do not currently have access to this content.