The combustor-turbine interface is an essential component in a gas turbine engine as it allows for thermal expansion between the first stage turbine vanes and combustor section. Although not considered as part of the external cooling scheme, leakage flow from the combustor-turbine interface can be utilized as coolant. This paper reports on the effects of orientation of a two-dimensional leakage slot, simulating the combustor-turbine interface, on the net heat flux reduction to a nozzle guide vane endwall. In addition to adiabatic effectiveness and heat transfer measurements, time-resolved, digital particle image velocimetry (TRDPIV) measurements were performed in the vane stagnation plane. Four interface slot orientations of 90 deg, 65 deg, 45 deg, and 30 deg located at 17% axial chord upstream of a first vane in a linear cascade were studied. Results indicate that reducing the slot angle to 45 deg can provide as much as a 137% reduction to the average heat load experienced by the endwall. Velocity measurements indicate the formation of a large leading edge vortex for coolant injected at 90 deg and 65 deg while coolant injected at 45 deg and 30 deg flows along the endwall and washes up the vane surface at the endwall junction.

References

References
1.
Lin
,
Y.-L.
,
Shih
,
T. I.-P.
,
Chyu
,
M. K.
, and
Bunker
,
R. S.
,
2000
, “
Effects of Gap Leakage on Fluid Flow in a Contoured Turbine Nozzle Guide Vane
,” ASME Paper No. GT2000-0555.
2.
Rehder
,
H. J.
, and
Dannhauer
,
A.
,
2007
, “
Experimental Investigation of Turbine Leakage Flows on the Three-Dimensional Flow Field and Endwall Heat Transfer
,”
J. Turbomach.
,
129
, pp.
608
618
.10.1115/1.2720484
3.
Thrift
,
A. A.
,
Thole
,
K. A.
, and
Hada
,
S.
,
2011
, “
Effects of Orientation and Position of the Combustor-Turbine Interface on the Cooling of a Vane Endwall
,” ASME Paper No. GT2011-45507.
4.
Sundaram
,
N.
, and
Thole
,
K. A.
,
2009
, “
Film-Cooling Flowfields With Trenched Holes on an Endwall
,”
J. Turbomach.
,
131
, p.
041007
.10.1115/1.3068316
5.
Radomsky
,
R. W.
, and
Thole
,
K. A.
,
2000
, “
High Freestream Turbulence Effects on Endwall Heat Transfer for a Gas Turbine Stator Vane
,”
J. Turbomach.
,
122
, pp.
699
708
.10.1115/1.1312807
6.
Thole
,
K. A.
,
Radomsky
,
R. W.
,
Kang
,
M. B.
, and
Kohli
,
A.
,
2002
, “
Elevated Freestream Turbulence Effects on Heat Transfer for a Gas Turbine Vane
,”
Int. J. Heat Mass Transfer
,
23
, pp.
137
147
.10.1016/S0142-727X(01)00145-X
7.
Ames
,
F. E.
,
Barbot
,
P. A.
, and
Wang
,
C.
,
2003
, “
Effects of Aeroderivative Combustor Turbulence on Endwall Heat Transfer Distributions Acquired in a Linear Vane Cascade
,”
J. Turbomach.
,
125
, pp.
210
220
.10.1115/1.1559897
8.
Nix
,
A. C.
,
Diller
,
T. E.
, and
Ng
,
W. F.
,
2007
, “
Experimental Measurements and Modeling of the Effects of Large-Scale Freestream Turbulence on Heat Transfer
,”
J. Turbomach.
,
129
, pp.
542
550
.10.1115/1.2515555
9.
Thrift
,
A. A.
,
Thole
,
K. A.
, and
Hada
,
S.
,
2010
, “
Effects of a Sloped Endwall on a Nozzle Guide Vane: Adiabatic Effectiveness Measurements
,”
J. Turbomach.
,
133
, p.
4002965
.
10.
Thrift
,
A. A.
,
Thole
,
K. A.
, and
Hada
,
S.
,
2010
, “
Effects of an Axisymmetric Contoured Endwall on a Nozzle Guide Vane: Convective Heat Transfer Measurements
,”
J. Turbomach.
,
133
, p.
4002966
.
11.
Fluent Inc.
,
2006
,
Fluent (version 6.2.1)
,
Fluent Inc.
,
Lebanon, NH
12.
Ethridge
,
M. I.
,
Cutbirth
,
J. M.
, and
Bogard
,
D. G.
,
2000
, “
Scaling of Performance for Varying Density Ratio Coolants on an Airfoil With Strong Curvature and Pressure Gradients
,”
J. Turbomach.
,
123
, pp.
231
237
.10.1115/1.1343457
13.
Bogard
,
D. G.
,
The Gas Turbine Handbook
,
National Energy Technology Laboratory,
Pittsburg, PA
, Chap. 4.2.2.1.
14.
LaVision
,
2008
, “
Product-Manual for Davis 7.2
,”
LaVision GmbH
,
Gottingen, Germany
.
15.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
, pp.
3
17
.10.1016/0894-1777(88)90043-X
16.
Raffel
,
M.
,
Willer
,
C.
,
Wereley
,
S.
, and
Kompenhans
,
J.
,
1998
,
Particle Image Velocimetry: A Practical Guide
,
Springer
,
New York
.
17.
Scarano
,
F.
, and
Riethmuller
,
M. L.
,
2000
, “
Advances in Iterative Multigrid PIV Image Processing
,”
Exp. Fluids
,
29
, pp.
S51
S60
.10.1007/s003480070007
18.
Thole
,
K. A.
,
The Gas Turbine Handbook
,
National Energy Technology Laboratory
,
Pittsburg, PA
, Chap. 4.2.3.
19.
Lynch
,
S. P.
, and
Thole
,
K. A.
,
2008
, “
The Effect of Combustor-Turbine Interface Gap Leakage on the Endwall Heat Transfer for a Nozzle Guide Vane
,”
J. Turbomach.
,
130
, p.
041019
.10.1115/1.2812950
20.
Cardwell
,
N. D.
,
Sundaram
,
N.
, and
Thole
,
K. A.
,
2007
, “
The Effects of Varying the Combustor-Turbine Gap
,”
J. Turbomach.
,
129
, pp.
756
764
.10.1115/1.2720497
You do not currently have access to this content.