Detailed heat transfer coefficient distributions have been obtained for narrow diverging channels with and without enhancement features. The cooling configurations considered include rib turbulators and concavities (or dimples) on the main heat transfer surfaces. All of the measurements are presented at a representative Reynolds number of 28,000. Pressure drop measurements for the overall channel are also presented to evaluate the heat transfer enhancement geometry with respect to the pumping power requirements. The test models were studied for wall heat transfer coefficient measurements using the transient liquid crystal technique. The model wall inner surfaces were sprayed with thermochromic liquid crystals and a transient test was used to obtain the local heat transfer coefficients from the measured color change. An analysis of the results shows that the choice of designs is limited by the available pressure drop, even if the design provides significantly higher heat transfer coefficients. Dimpled surfaces provide appreciably high heat transfer coefficients and a reasonable pressure drop, whereas ribbed ducts provide significantly higher heat transfer coefficients and a higher overall pressure drop.

References

References
1.
Han
,
J. C.
,
1984
, “
Heat Transfer and Friction in Channels With Two Opposite Rib-Roughened Walls
,”
ASME J. Heat Transfer
,
106
, pp.
774
781
.10.1115/1.3246751
2.
Han
,
J. C.
,
1988
, “
Heat Transfer and Friction Characteristics in Rectangular Channels With Rib Turbulators
,”
ASME J. Heat Transfer
,
110
, pp.
321
328
.10.1115/1.3250487
3.
Han
,
J. C.
,
Zhang
,
Y. M.
, and
Lee
,
C. P.
,
1991
, “
Augmented Heat Transfer in Square Channels With Parallel, Crossed, and V-Shaped Ribs
,”
ASME J. Heat Transfer
,
113
, pp.
590
596
.10.1115/1.2910606
4.
Zhang
,
Y. M.
,
Gu
,
W. Z.
, and
Han
,
J. C.
,
1994
, “
Augmented Heat Transfer in Triangular Ducts With Full and Partial Ribbed Walls
,”
J. Thermophys. Heat Transfer
,
8
, pp.
574
579
.10.2514/3.580
5.
Taslim
,
M. E.
,
Li
,
T.
, and
Spring
,
S. D.
,
1997
, “
Measurements of Heat Transfer Coefficients and Friction Factors in Rib-Roughened Channels Simulating Leading Edge Cavities of a Modern Turbine Blade
,”
ASME J. Turbomach.
,
119
, pp.
601
609
.10.1115/1.2841164
6.
Ekkad
,
S. V.
, and
Han
,
J. C.
,
1997
, “
Detailed Heat Transfer Distributions in Two-Pass Square Channels With Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
40
(
11
), pp.
2525
2537
.10.1016/S0017-9310(96)00318-3
7.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
,
2001
,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor & Francis
,
New York
.
8.
Kesarev
,
V. S.
, and
Kozlov
,
A. P.
,
1993
, “
Convective Heat Transfer in Turbulized Flow Past a Hemispherical Cavity
,”
Heat Transfer Res.
,
25
, pp.
156
160
.
9.
Schukin
,
A. V.
,
Kozlov
,
A. P.
, and
Agachev
,
R. S.
,
1995
, “
Study and Application for Hemispherical Cavities for Surface Heat Transfer Augmentation
,”
IGTI Turbo Expo
,
Houston
, TX, June 5–8, ASME Paper No. 95-GT-59.
10.
Syred
,
N.
,
Khalatov
,
A.
,
Kozlov
,
A.
,
Shchukin
,
A.
, and
Agachev
,
R.
,
2000
, “
Effect of Surface Curvature on Heat Transfer and Hydrodynamics Within a Single Hemispherical Dimple
,”
IGTI Turbo Expo
,
Munich, Germany, May 8–11, ASME
Paper No. 2000-GT-236.
11.
Afanas'yev
,
V. N.
, and
Chudnovskiy
,
Ya. P.
,
1992
, “
Heat Transfer and Friction on Surfaces Contoured by Spherical Depressions
,”
Heat Transfer Res.
,
24
, pp.
24
104
.
12.
Afanas'yev
,
V. N.
,
Veselkin
,
V. Yu.
,
Leont'ev
,
A. I.
,
Skibin
,
A. P.
, and
Chudnovskiy
,
Ya. P.
,
1993
, “
Thermohydraulics of Flow Over Isolated Depressions (Pits, Grooves) in a Smooth Wall
,”
Heat Transfer Res.
,
25
(
1
), pp.
22
56
.
13.
Belen'kiy
,
M. Ya.
,
Gotovskii
,
M. A.
Lekakh
,
B. M.
Fokin
,
B. S.
, and
Khabenskii
,
V. B.
,
1992
, “
Experimental Study of the Thermal and Hydraulic Characteristics of Heat Transfer Surfaces Formed by Spherical Cavities
,”
Teplofiz. Vys. Temp.
,
29
(
6
), pp.
1142
1147
.
14.
Belen'kiy
,
M. Ya.
,
Gotovskii
,
M. A.
,
Lekakh
,
B. M.
,
Fokin
,
B. S.
, and
Dolgushin
,
K. S.
,
1993
, “
Heat Transfer Augmentation Using Surfaces Formed by a System of Spherical Cavities
,”
Heat Transfer Res.
,
25
, pp.
196
202
.
15.
Khalatov
,
A. A.
,
2001
, “
Vortex Technologies in Aerospace Engineering
,”
Proceedings of the U.S.–Ukrainian Workshop on Innovative Combustion and Aerothermal Technologies in Energy and Power Systems
,
Kiev
,
May 20–25
.
16.
Chyu
,
M. K.
,
Yu
,
Y.
,
Ding
,
H.
,
Downs
,
J. P.
, and
Soechting
,
F. O.
,
1997
, “
Concavity Enhanced Heat Transfer in an Internal Cooling Passage
,”
IGTI Turbo Expo
,
Orlando
, Paper No. 97-GT-437.
17.
Moon
,
H. K.
,
O'Connell
,
T.
, and
Glezer
,
B.
,
1999
, “
Channel Height Effect on Heat Transfer and Friction in a Dimpled Passage
,”
IGTI Turbo Expo
,
Indianapolis
, June 7–10, ASME Paper No. 99-GT-163.
18.
Mahmood
,
G. I.
,
Hill
,
M. L.
,
Nelson
,
D. L.
,
Ligrani
,
P. M.
,
Moon
,
H. K.
, and
Glezer
,
B.
,
2000
, “
Local Heat Transfer and Flow Structure On and Above a Dimpled Surface in a Channel
,”
IGTI Turbo Expo
,
Munich
, Germany, May 8–11, ASME Paper No. 2000-GT-230.
19.
Bunker
,
R. S.
,
Gotovskii
,
M.
,
Belen'kiy
,
M.
, and
Fokin
,
B.
,
2003
, “
Heat Transfer and Pressure Loss for Flows Inside Converging and Diverging Channels With Surface Concavity Shape Effects
,”
Proceedings of the 4th International Conference on Compact Heat Exchangers and Enhancement Technology
,
Crete Island, Greece
,
September 29–October 3
.
20.
Esposito
,
E.
,
Ekkad
,
S. V.
,
Kim
,
Y. W.
, and
Dutta
,
P.
,
2009
, “
Novel Jet Impingement Cooling Geometry for Combustor Liner Backside Cooling
,”
J. Thermal Sci. Eng. Appl.
,
1
, p.
021001
.10.1115/1.3202799
21.
Ekkad
,
S. V.
, and
Han
,
J. C.
,
2000
, “
A Transient Liquid Crystal Thermography Technique for Gas Turbine Heat Transfer Measurements
,”
Meas. Sci. Technol.
,
11
, pp.
957
968
.10.1088/0957-0233/11/7/312
22.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
23.
Webb
,
R. L.
,
2006
,
Principles of Enhanced Heat Transfer
,
2nd ed.
,
Taylor & Francis
,
New York
.
You do not currently have access to this content.