Results of second law analysis of experimentally-measured aerodynamic losses are presented for a cambered vane with and without film cooling, including comparisons with similar results from a symmetric airfoil. Included are distributions of local entropy creation, as well as mass-averaged magnitudes of global exergy destruction. The axial chord length of the cambered vane is 4.85 cm, the true chord length is 7.27 cm, and the effective pitch is 6.35 cm. Data are presented for three airfoil Mex distributions (including one wherein the flow is transonic), magnitudes of inlet turbulence intensity from 1.1% to 8.2%, and ks/cx surface roughness values of 0, 0.00108, and 0.00258. The associated second law aerodynamics losses are presented for two different measurement locations downstream of the vane trailing edge (one axial chord length and 0.25 axial chord length). The surface roughness, when present, simulates characteristics of the actual roughness which develops on operating turbine airfoils from a utility power engine, over long operating times, due to particulate deposition and to spallation of thermal barrier coatings. Quantitative surface roughness characteristics which are matched include equivalent sandgrain roughness size, as well as the irregularity, nonuniformity, and the three-dimensional irregular arrangement of the roughness. Relative to a smooth, symmetric airfoil with no film cooling at low Mach number and low freestream turbulence intensity, overall, the largest increases in exergy destruction occur with increasing Mach number, and increasing surface roughness. Important variations are also observed as airfoil camber changes. Progressively smaller mass-averaged exergy destruction increases are then observed with changes of freestream turbulence intensity, and different film cooling conditions. In addition, the dependences of overall exergy destruction magnitudes on mainstream turbulence intensity and freestream Mach number are vastly different as level of vane surface roughness changes. When film cooling is present, overall mass-averaged exergy destruction magnitudes are significantly less than values associated with increased airfoil surface roughness for both the cambered vane and the symmetric airfoil. Dimensional exergy destruction values (associated with wake aerodynamic losses) for the symmetric airfoil with film cooling are then significantly higher than data from the cambered vane with film cooling, when compared at a particular blowing ratio.

References

References
1.
Bejan
,
A.
,
1978
, “
General Criterion for Rating Heat-Exchanger Performance
,”
Int. J. Heat Mass Transfer
,
21
, pp.
655
658
.10.1016/0017-9310(78)90064-9
2.
Bejan
,
A.
,
1980
, “
Second Law Analysis in Heat Transfer
,”
Energy
,
5
, pp.
720
732
.10.1016/0360-5442(80)90091-2
3.
Griffin
,
P. C.
, and
Davies
,
M. R. D.
,
2004
, “
Aerodynamic Entropy Generation Rate in a Boundary Layer With High Free Stream Turbulence
,”
ASME Trans. J. Fluids Eng.
,
126
, pp.
700
703
.10.1115/1.1780170
4.
Iandoli
,
C. L.
,
Sciubba
,
E.
, and
Zeoli
,
N.
,
2008
, “
The Computation of the Entropy Generation Rate for Turbomachinery Design Application: Some Theoretical Remarks and Practical Examples
,”
Int. J. Energy Technol. Policy
,
6
, pp.
64
95
.10.1504/IJETP.2008.017030
5.
Kock
,
F.
, and
Herwig
,
H.
,
2005
, “
Entropy Production Calculation for Turbulent Shear Flows and Their Implementation in CFD Codes
,”
Int. J. Heat Fluid Flow
,
26
, pp.
672
680
.10.1016/j.ijheatfluidflow.2005.03.005
6.
Walsh
,
E. J.
, and
McEligot
,
D.
,
2008
, “
Relation of Entropy Generation to Wall ‘Laws’ for Turbulent Flows
,”
Int. J. Comput. Fluid Dyn.
,
22
, pp.
649
657
.10.1080/10618560802448551
7.
McEligot
,
D. M.
,
Walsh
,
E. J.
, and
Laurien
,
E.
,
2006
, “
Entropy Generation in the Viscous Layer of a Turbulent Channel Flow
,”
5th International Symposium on Turbulence
,
Heat and Mass Transfer
,
Dubrovnik
.
8.
Geogory-Smith
,
D. G.
, and
Cleak
,
J. G. E.
,
1992
, “
Secondary Flow Measurements in a Turbine Cascade With High Inlet Turbulence
,”
ASME J. Turbomach.
,
114
, pp.
173
183
.10.1115/1.2927981
9.
Giel
,
P. W.
,
Bunker
,
R. S.
,
Van Fossen
,
G. J.
, and
Boyle
R. J.
,
2000
, “
Heat Transfer Measurements and Predictions on a Power Generation Gas Turbine Blade
,” NASA/TM 2000-210021, ASME Paper No. 2000-GT-209.
10.
Boyle
,
R. J.
,
Luci
,
B. L.
,
Verhoff
,
V. G.
,
Camperchioli
,
W. P.
, and
La
,
H.
,
1998
, “
Aerodynamics of a Transitioning Turbine Stator Over a Range of Reynolds Numbers
,” NASA No. 19980218604 1.15:208408, ASME Paper No. 98-GT-285.
11.
Ames
,
F. E.
, and
Plesniak
,
M. W.
,
1997
, “
The Influence of Large–Scale, High Intensity Turbulence on Vane Aerodynamics Losses, Wake Growth, and the Exit Turbulence Parameters
,”
ASME J. Turbomach.
,
119
, pp.
182
192
.10.1115/1.2841100
12.
Jouini
,
D. B. M.
,
Sjolander
,
S. A.
, and
Moustapha
,
S. H.
,
2001
, “
Aerodynamic Performance of a Transonic Turbine Cascade at Off-Design Conditions
,”
ASME J. Turbomach.
,
123
, pp.
510
518
.10.1115/1.1370157
13.
Radomsky
,
R. W.
, and
Thole
,
K. A.
,
2002
, “
Detailed Boundary Layer Measurements on a Turbine Stator Vane at Elevated Freestream Turbulence Levels
,”
ASME J. Turbomach.
,
124
, pp.
107
118
.10.1115/1.1424891
14.
Boyle
,
R. J.
,
Lucci
,
B. L.
, and
Senyitko
R. G.
,
2002
, “
Aerodynamics Performance and Turbulence Measurements in a Turbine Vane Cascade
,” NASA/TM 2002-211709, ASME Paper No. GT-2002-30434.
15.
Christopher
,
R. J.
,
Xavier
,
A. M.
,
Friedrich
,
O. S.
,
Charles
D. M.
, and
Matthew
M.
,
1998
, “
High Pressure Turbine Vane Annular Cascade Heat Flux and Aerodynamic Measurements With Comparisons to Predictions
,” ASME Paper No. 98-GT-430.
16.
Coton
,
T.
,
Arts
,
T.
, and
Lefebvre
,
M.
,
2001
, “
Effects of Reynolds and Mach Numbers on the Profile Losses of a Conventional Low-Pressure Turbine Rotor Cascade With an Increasing Pitch-Chord Ratio
,”
Proc. Inst. Mech. Eng., Part A
,
215
, pp.
763
772
.10.1243/0957650011538893
17.
Nikuradse
,
J.
,
1933
, “
Laws of Flow in Rough Pipes
,”
National Advisory Committee on Aeronautics
, Report No. NACA TM 1292.
18.
Schlichting
,
H.
,
1936
, “
Experimental Investigation of the Problem of Surface Roughness
,”
National Advisory Committee on Aeronautics
, Report No. NACA TM-832.
19.
Coleman
,
H. W.
,
Hodge
,
B. K.
, and
Taylor
,
R. P.
,
1984
, “
A Re-Evaluation of Schlichting's Surface Roughness Experiment
,”
ASME Trans. J. Fluids Eng.
,
106
, pp.
60
65
.10.1115/1.3242406
20.
Sigal
,
A.
, and
Danberg
,
J. E.
,
1990
, “
New Correlation of Roughness Density Effect on Turbulent Boundary Layer
,”
AIAA J.
,
28
, pp.
554
556
.10.2514/3.10427
21.
Sigal
,
A.
, and
Danberg
,
J. E.
,
1988
, “
Analysis of Turbulent Boundary Layer Over Roughness Surface With Application to Projectile Aerodynamics
,”
Amy Ballistic Research Lab
,
Aberdeen Proving Grounds MD
, Technical Report No. BRL-TR-2977.
22.
Van Rij
,
J. A.
,
Belnap
,
B. J.
, and
Ligrani
,
P.M.
,
2002
, “
Analysis and Experiments on Three–Dimensional, Irregular Surface Roughness
,”
ASME Trans. J. Fluids Eng.
,
124
, pp.
671
677
.10.1115/1.1486222
23.
Zhang
,
Q.
,
Lee
,
S. W.
, and
Ligrani
,
P. M.
,
2004
, “
Effects of Surface Roughness and Turbulence Intensity on the Aerodynamic Losses Produced by the Suction Surface of a Simulated Turbine Airfoil
,”
ASME J. Fluids Eng.
,
126
(2)
, pp.
257
265
.10.1115/1.1667886
24.
Bammert
,
K.
, and
Sandstede
,
H.
,
1980
, “
Measurements of the Boundary Layer Development Along a Turbine Blade With Rough Surfaces
,”
ASME J. Eng. Power
,
102
, pp.
978
983
.10.1115/1.3230370
25.
Kind
,
R. J.
,
Serjak
,
P. J.
, and
Abbott
,
M. W. P.
,
1998
, “
Measurements and Prediction of The Effects of Surface Roughness on Profile Losses and Deviation In a Turbine Cascade
,”
ASME J. Turbomach.
,
120
, pp.
20
27
.10.1115/1.2841383
26.
Bogard
,
D. G.
,
Schmidt
,
D. L.
, and
Tabbita
,
M.
,
1998
, “
Characterization and Laboratory Simulation of Turbine Airfoil Surface Roughness and Associated Heat Transfer
,”
ASME J. Turbomach.
,
120
, pp.
337
342
.10.1115/1.2841411
27.
Abuaf
,
N.
,
Bunker
,
R. S.
, and
Lee
,
C. P.
,
1998
, “
Effects of Surface Roughness on Heat Transfer and Aerodynamics Performance of Turbine Airfoils
,”
ASME J. Turbomach.
,
120
, pp.
522
529
.10.1115/1.2841749
28.
Leipold
,
R.
,
Boese
,
M.
, and
Fottner
,
L.
,
2000
, “
The Influence of Technical Surface Roughness Caused by Precision Forging on the Flow Around a Highly Loaded Compressor Cascade
,”
ASME J. Turbomach.
,
122
, pp.
416
425
.10.1115/1.1302286
29.
Sitaram
,
N.
,
Govardhan
,
M.
, and
Murali Krishna
,
V. T.
,
1999
, “
Loss Reduction by Means of Two-Dimensional Roughness Elements on the Suction Surface of a Linear Turbine Rotor Cascade
,”
Flow, Turbul. Combust.
,
62
, pp.
227
248
.10.1023/A:1009945110174
30.
Stripf
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2004
, “
Surface Roughness Effects on External Heat Transfer of a HP Turbine Vane
,” ASME Paper No. GT2004-53114.
31.
Roberts
,
S. K.
, and
Yaras
,
M. I.
,
2004
, “
Boundary-Layer Transition Over Rough Surfaces With Elevated Freestream Turbulence
,” ASME Paper No. GT2004-53668.
32.
Boyle
,
R. J.
and
Senyitko
R. G.
,
2003
, “
Measurements and Predictions of Surface Roughness Effects on Turbine Vane Aerodynamics
,” ASME Paper No. GT-2003-38580.
33.
Zhang
,
Q.
, and
Ligrani
,
P.
,
2006
, “
Aerodynamic Losses of a Cambered Turbine Vane: Influences of Surface Roughness and Freestream Turbulence Intensity
,”
ASME J. Turbomach.
,
128
, pp.
536
546
.10.1115/1.2185125
34.
Pullan
,
G.
,
2004
, “
Secondary Flows and Loss Caused by Blade Row Interaction in a Turbine Stage
,” ASME Paper No. GT2004-53743.
35.
Benner
,
M.
,
Sjolander
,
S.
, and
Moustapha
,
S.
,
2001
, “
Shock Wave-Film Cooling Interactions in Transonic Flows
,”
ASME J. Turbomach.
,
123
, pp.
788
787
.10.1115/1.1397305
36.
Day
,
C. R. B.
,
Oldfield
,
M. L. G.
, and
Lock
,
G. D.
,
2000
, “
Aerodynamic Performance of an Annular Cascade of Film Cooled Nozzle Guide Vanes Under Engine Representative Conditions
,”
Exp. Fluids
,
29
, pp.
117
129
.10.1007/s003489900062
37.
Ito
,
S.
,
Eckert
,
E. R. G.
, and
Goldstein
,
R. J.
,
1980
, “
Aerodynamic Loss in a Gas Turbine Stage With Film Cooling
,”
ASME J. Eng. Power
,
102
, pp.
964
970
.10.1115/1.3230368
38.
Hong
,
Y.
,
Fu
,
C.
,
Cunzhong
,
G.
, and
Zhongqi
,
W.
,
1997
, “
Investigation of Cooling-Air Injection on the Flow Field Within a Linear Turbine Cascade
,” ASME Paper No. 97-GT-520.
39.
Haller
,
B. R.
, and
Camus
,
J. J.
,
1984
, “
Aerodynamic Loss Penalty Produced by Film Cooling Transonic Turbine Blades
,”
Trans. ASME: J. Eng. Gas. Turbines Power
,
106
, pp.
198
205
.10.1115/1.3239535
40.
Kollen
,
O.
, and
Koschel
,
W.
,
1985
, “
Effect of Film-Cooling on the Aerodynamic Performance of a Turbine Cascade
,” Report No. AGARD CP-390.
41.
Ligrani
,
P.
and
Jin
,
J. S.
, “
Second Law Analysis of Aerodynamic Losses From Symmetric Airfoils With and Without Film Cooling
,”
Department of Aerospace and Mechanical Engineering, Saint Louis University
,
St. Louis, Missouri
(submitted).
42.
Chappell
,
J.
,
Ligrani
,
P.
,
Sreekanth
,
S.
, and
Lucas
,
T.
,
2009
, “
Aerodynamic Performance of Suction-Side Gill Region Film Cooling
,”
ASME J. Turbomach.
,
132
, p.
031020
.10.1115/1.3151603
43.
Zhang
,
Q.
, and
Ligrani
,
P. M.
,
2004
, “
Mach Number/Surface Roughness Effects on Symmetric Transonic Turbine Airfoil Aerodynamic Losses
,”
J. Propul. Power
,
20
, pp.
1117
1125
.10.2514/1.6118
44.
Jackson
,
D. J.
,
Lee
,
K. L.
,
Ligrani
,
P. M.
, and
Johnson
,
P. D.
,
2000
, “
Transonic Aerodynamic Losses Due to Turbine Airfoil, Suction Surface Film Cooling
,”
ASME J. Turbomach.
,
122
, pp.
317
326
.10.1115/1.555455
45.
Furukawa
,
T.
, and
Ligrani
,
P. M.
,
2002
, “
Transonic Film Cooling Effectiveness From Shaped Holes on a Simulated Turbine Airfoil
,”
J. Thermophys. Heat Transfer
,
16
, pp.
228
237
.10.2514/2.6672
46.
Zhang
,
Q.
,
Sandberg
,
D.
, and
Ligrani
,
P. M.
2005
, “
Mach Number and Freestream Turbulence Effects on Turbine Vane Aerodynamic Losses
,”
J. Propul. Power
,
21
, pp.
988
996
.10.2514/1.14837
47.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech Sci.
,
75
, pp.
3
8
.
48.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
, pp.
3
17
.10.1016/0894-1777(88)90043-X
49.
Zhang
,
Q.
,
Goodro
,
M.
,
Ligrani
,
P. M.
,
Trindade
,
R.
, and
Srrekanth
,
S.
,
2006
, “
Influence of Surface Roughness on the Aerodynamic Losses of a Turbine Vane
,”
Trans. ASME J. Fluids Eng.
,
128
, pp.
568
578
.10.1115/1.2175163
50.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME Transactions-J. Tubomach.
,
115
, pp.
621
656
.10.1115/1.2929299
51.
Çengel
,
Y. A.
and
Boles
,
M. A.
,
2011
,
Thermodynamics an Engineering Approach
,
7th ed.
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.