Leading edge heat loads on turbine airfoils can be reduced by increasing the diameter of the leading edge. The lower external heat transfer and more generous curvature may allow for cooling this region internally. Large diameter leading edge regions are expected to exhibit a relatively broad region with nearly constant heat transfer. However, the ability of internal passages to cool a surface diminishes with distance as cooling air picks up thermal energy within the passage. Two novel internal cooling geometries have been designed and tested, which incrementally replenish cooling air by using impingement holes distributed along the array. These cooling methods have been compared to a baseline high solidity passage in terms of both array heat transfer and pressure drop. Heat transfer rates and pressure drop have been determined on a row by row basis to provide a means to assess their ability to sustain adequate cooling levels across the entire leading edge region. The authors believe turbine airfoil designs integrating large diameter leading edge regions with properly designed internal passages have the potential to eliminate showerhead cooling arrays in many industrial gas turbine applications. This change is especially beneficial in environments where fuel or air impurities have the potential to clog leading edge showerhead cooling arrays. Heat transfer and pressure drop measurements were acquired in a bench scale test rig. Reynolds numbers ranged from approximately 5000 to 60,000 for the constant height channel arrays based on the pin diameter and the local maximum average velocity across a row. The high solidity pin fin arrays have an axial spacing (X/D) of 1.074 and a cross channel spacing (S/D) of 1.625. The constant section pin fin arrays have channel height to diameter ratios of 0.5. Each array has eight rows of pins with six pins per row in a staggered arrangement. Heat transfer testing was conducted using a constant temperature boundary condition.

References

References
1.
Metzger
,
D. E.
, and
Haley
,
S. W.
,
1982
, “
Heat Transfer Experiments and Flow Visualization for Arrays of Short Pin Fins
,” ASME Paper No. 82-GT-138.
2.
Metzger
,
D. E.
,
Shepard
,
W. B.
, and
Haley
,
S. W.
,
1986
, “
Row Resolved Heat Transfer Variations in Pin Fin Arrays Including Effects of Non-Uniform Arrays and Flow Convergence
,” ASME Paper No. 86-GT-132.
3.
Van Fossen
,
G. J.
,
1982
, “
Heat-transfer Coefficients for Staggered Arrays of Short Pin Fins
,”
ASME J. Eng. Power
,”
104
, pp.
268
274
.10.1115/1.3227275
4.
Jaswal
,
I.
, and
Ames
,
F. E.
,
2009
, “
Heat Transfer and Pressure Drop Measurements in Constant and Converging Section Pin and Diamond Pedestal Arrays
,”
ASME J. Therm. Sci. Eng. Appl.
,
1
, pp.
011006-1
011006-7
.10.1115/1.3159498
5.
Chyu
,
M. K.
,
Hsing
,
Y. C.
,
Shih
,
T. I.-P.
, and
Natarajan
,
V.
,
1999
, “
Heat Transfer Contributions of Pins and Endwall in Pin-fin Arrays: Effects of Thermal Boundary Conditions Modeling
,”
ASME J. Turbomach.
,
121
, pp.
257
263
.10.1115/1.2841309
6.
Ames
,
F. E.
Solberg
,
C. S.
,
Goman
,
M. D.
,
Curtis
,
D. J.
, and
Steinbrecker
,
B. T.
,
2001
, “
Experimental Measurements and Computations of Heat Transfer and Friction Factor in a Staggered Pin Fin Array
,” ASME Paper No. DETC 2001/CIE-21761.
7.
Chyu
,
M. K.
,
Yen
,
C. H.
, and
Siw
,
S.
,
2007
, “
Comparison of Heat Transfer From Staggered Pin Fin Arrays With Circular, Cubic and Diamond Shaped Pins
,” ASME Paper No. GT2007-28306.
8.
Ames
,
F. E.
,
Dvorak
,
L. A.
, and
Morrow
,
M. J.
,
2005
, “
Turbulent Augmentation of Internal Convection of Pins in Staggered Pin Fin Arrays
,”
ASME J. Turbomach.
,
127
, pp.
183
190
.10.1115/1.1811090
9.
Ames
,
F. E.
,
Nordquist
,
C. A.
, and
Klennert
,
L. A.
,
2007
, “
Endwall Heat Transfer Measurements in a Staggered Pin Fin Array With an Adiabatic Pin
,” ASME Paper No. GT2007-27432.
10.
Armstrong
,
J.
, and
Winstanley
,
D.
,
1988
, “
A Review of Staggered Array Pin Fin Heat Transfer for Turbine Cooling Applications
,”
ASME J. Turbomach.
,
110
, pp.
94
103
.10.1115/1.3262173
11.
Metzger
,
D. E.
,
Fan
,
C. S.
, and
Shepard
,
W. B.
,
1982
, “
Pressure Loss and Heat Transfer Through Multiple Rows of Short Pins
,”
ASME J. Heat Transfer
,
3
, pp.
137
142
.
12.
Jacob
,
M.
,
1938
, “
Heat Transfer and Flow Resistance in Cross Flow of Gases Over Tube Banks
,”
Trans. ASME
,
59
, pp.
384
386
.
13.
Grimison
,
E. D.
,
1937
, “
Correlation and Utilization of New Data on Flow Resistance and Heat Transfer for Cross Flow of Gases Over Tube Banks
,”
Trans. ASME
,
59
, pp.
583
594
.
14.
Kercher
,
D. M.
, and
Tabakoff
,
W.
,
1970
, “
Heat Transfer by a Square Array of Round Air Jets Impinging Perpendicular to a Flat Surface
,”
ASME J. Eng. Power
,
92
, pp.
73
82
.10.1115/1.3445306
15.
Metzger
,
D. E.
, and
Korstad
,
R. J.
,
1972
, “
Effects of Crossflow on Impingement Heat Transfer
,”
ASME J. Eng. Power
,
94
, pp.
35
41
.10.1115/1.3445616
16.
Florschuetz
,
L. W.
,
Metzger
,
D. E.
, and
Su
,
C. C.
,
1984
,
ASME J. Eng. Power
,
106
, pp.
34
41
.10.1115/1.3239548
17.
Van Treuren
,
K. W.
,
Wang
,
Z.
,
Ireland
,
P. T.
, and
Jones
,
T. V.
,
1994
, “
Detailed Measurements of Local Heat Transfer Coefficient and Adiabatic Wall Temperature Beneath an Array of Impinging Jets
,”
ASME J. Turbomach
,
116
, pp.
369
374
.10.1115/1.2929423
18.
Son
,
C.
,
Gillespie
,
D.
,
Ireland
,
P. T.
, and
Dailey
,
G. M.
,
2001
, “
Heat Transfer and Flow Characteristics of an Engine Representative Inpingement Cooling System
,”
ASME J. Turbomach.
,
123
, pp.
154
160
.10.1115/1.1328087
19.
Cho
,
H. H.
, and
Goldstein
,
R. J.
,
1997
, “
Total-Coverage Discrete Hole Wall Cooling
,”
ASME J. Turbomach.
,
119
, pp.
320
329
.10.1115/1.2841115
20.
Abdul Hussain
,
R. A. A.
, and
Andrews
,
G. E.
,
1991
, “
Enhanced Full Coverage Impingement Heat Transfer With Obstacles in the Gap
,” ASME Paper No. 91-GT-346.
21.
Andrews
,
G. E.
,
Abdul Hussain
,
R. A. A.
, and
Mkpadi
,
M. C.
,
2006
, “
Enhanced Impingement Heat Transfer: The Influence of Impingement X/D for Interrupted Rib Obstacles (Rectangular Pin Fins)
,”
ASME J. Turbomach.
,
128
, pp.
321
331
.10.1115/1.1860574
22.
Annerfeldt
,
M. W.
,
Persson
,
J. L.
, and
Torisson
,
T.
, “
Experimental Investigation of Impingement Cooling With Turbulators or Surface Enlarging Elements
,” ASME Paper No. 2001-GT-149.
23.
Miller
,
R. W.
,
1996
,
Flow Measurement Engineering Handbook
,
3rd ed.
,
McGraw-Hill
,
New York
.
24.
Moffat
,
R. J.
,
1988
, “
Describing Uncertainties in Experimental Results
,”
Exp. Fluid Sci.
,
1
, pp.
3
17
.10.1016/0894-1777(88)90043-X
You do not currently have access to this content.