This experimental study measured the detailed Nusselt numbers (Nu) distributions over two opposite leading and trailing walls of a rotating rectangular channel fitted with a diamond-shaped pin-fin array with radially outward flow for gas turbine rotor blade cooling applications. The combined and isolated effects of Reynolds (Re), rotation (Ro), and buoyancy (Bu) numbers on local and area-averaged Nusselt numbers (Nu and Nu¯) were examined at the test conditions of 5000 ≤ Re ≤ 15,000, 0 ≤ Ro ≤ 0.6, and 0.0007 ≤ Bu ≤ 0.31. The present infrared thermography method enables the generation of full-field Nu scans over the rotating end walls at the realistic engine Ro conditions as the first attempt to reveal the combined rotating buoyancy and Coriolis force effects on heat transfer properties. The selected heat transfer results demonstrate the Coriolis and rotating-buoyancy effects on the heat transfer performances of this rotating channel. Acting by the combined Coriolis and rotating buoyancy effects on the area-averaged heat transfer properties, the rotating leading and trailing area-averaged Nusselt numbers are modified, respectively, to 0.82–1.52 and 1–1.89 times the static channel references. A set of physically consistent empirical Nu¯ correlations was generated to permit the assessments of individual and interdependent Re, Ro, and Bu effects on the area-averaged heat transfer properties over leading and trailing end walls.

References

References
1.
Van Fossen
,
G. J.
,
1982
, “
Heat Transfer Coefficients for Staggered Arrays of Short Pin Fins
,”
ASME J. Eng. Power
,
104
, pp.
268
274
.10.1115/1.3227275
2.
Armstrong
,
J.
, and
Winstanley
,
D.
,
1988
, “
A Review of Staggered Array Pin Fin Heat Transfer for Turbine Cooling Applications
,”
ASME J. Turbomach.
,
110
, pp.
94
103
.10.1115/1.3262173
3.
Chyu
,
M. K.
,
1990
, “
Heat Transfer and Pressure Drop for Short Pin-Fin Arrays and Pin-Endwall Fillet
,”
ASME J. Heat Transfer
,
112
, pp.
926
932
.10.1115/1.2910502
4.
Won
,
S. Y.
,
Mahmood
,
G. I.
, and
Ligrani
,
P. M.
,
2004
, “
Spatially-Resolved Heat Transfer and Flow Structure in a Rectangular Channel With Pin Fins
,”
Int. J. Heat Mass Transfer
,
47
, pp.
1731
1743
.10.1016/j.ijheatmasstransfer.2003.10.007
5.
Chyu
,
M. K.
, and
Goldstein
,
R. J.
,
1991
, “
Influence of an Array of Wall-Mounted Cylinders on the Mass Transfer From a Flat Surface
,”
Int. J. Heat Mass Transfer
,
34
, pp.
2175
2186
.10.1016/0017-9310(91)90044-F
6.
Chyu
,
M. K.
, and
Natarajan
,
V.
,
1996
, “
Heat Transfer on the Base Surface of Three-Dimensional Protruding Elements
,”
Int. J. Heat Mass Transfer
,
39
, pp.
2925
2935
.10.1016/0017-9310(95)00381-9
7.
Chyu
,
M. K.
,
Hsing
,
Y. C.
,
Shih
,
T. I.-P.
, and
Natarajan
,
V.
,
1999
, “
Heat Transfer Contributions of Pins and Endwalls in Pin-Fin Array: Effects of Thermal Boundary Condition Modeling
,”
ASME J. Turbomach.
,
121
, pp.
257
263
.10.1115/1.2841309
8.
Metzger
,
D. E.
,
Berry
,
R. A.
, and
Bronson
,
J. P.
,
1982
, “
Developing Heat Transfer in Rectangular Ducts With Staggered Arrays of Short Pin Fins
,”
ASME J. Heat Transfer
,
104
, pp.
700
706
.10.1115/1.3245188
9.
Jun
,
S. P.
,
Kyung
,
M. K.
,
Dong
,
H. L.
,
Cho
,
H. H.
, and
Chyu
,
M. K.
,
2011
, “
Heat Transfer in Rotating Channel With Inclined Pin-Fins
,”
ASME J. Turbomach.
,
133
, p.
021003
.10.1115/1.4000553
10.
Bianchini
,
C.
,
Facchini
,
B.
,
Simonetti
,
F.
,
Tarchi
,
L.
, and
Zecchi
,
S.
,
2012
, “
Numerical and Experimental Investigation of Turning Flow Effects on Innovative Pin Fin Arrangements for Trailing Edge Cooling
,”
ASME J. Turbomach.
,
134
, p.
021005
.10.1115/1.4003230
11.
Jubran
,
B. A.
,
Hamdan
,
M. A.
, and
Abdualh
,
R. M.
,
1993
, “
Enhanced Heat Transfer, Missing Pin and Optimization for Cylindrical Pin Fin Arrays
,”
ASME J. Heat Transfer
,
115
, pp.
576
583
.10.1115/1.2910727
12.
Chyu
,
M. K.
, and
Natarajan
,
V.
,
1994
, “
Effect of Flow Angle-of-Attach on the Local Heat/Mass Transfer Distributions From a Wall-Mounted Cube
,”
ASME J. Heat Transfer
,
116
, pp.
552
560
.10.1115/1.2910873
13.
Chyu
,
M. K.
,
Oluyede
,
E. O.
, and
Moon
,
H.-K.
,
2007
, “
Heat Transfer on Convective Surfaces With Pin-Fins Mounted in Inclined Angles
,”
ASME Turbo Expo, May 14–17, Montreal, Canada, Paper No. GT2007-28138
.
14.
Sahiti
,
N.
,
Durst
,
F.
, and
Geremia
,
P.
,
2007
,
Selection and Optimization of Pin Cross-Sections for Electronics Cooling
,”
Appl. Thermal Eng.
,
27
, pp.
111
119
.10.1016/j.applthermaleng.2006.05.018
15.
Willett
,
F. T.
, and
Bergles
,
A. E.
2002
, “
Heat Transfer in Rotating Narrow Rectangular Pin-Fin Ducts
,”
Exp. Thermal Fluid Sci.
,
25
, pp.
573
582
.10.1016/S0894-1777(01)00103-0
16.
Chang
,
S. W.
,
Liou
,
T.-M.
,
Yang
,
T. L.
, and
Hong
,
G. F.
,
2010
, “
Heat Transfer in Radially Rotating Pin-fin Channel at High Rotation Numbers
,”
ASME J. Turbomach.
,
132
, p.
021019
.10.1115/1.3147103
17.
Sleiti
,
A. K.
, and
Kapat
,
J. S.
,
2008
, “
Effect of Coriolis and Centrifugal Forces on Turbulence and Transport at High Rotation and Density Ratios in a Rib-Roughened Channel
,”
Int. J. Thermal Sciences
,
47
, pp.
609
619
.10.1016/j.ijthermalsci.2007.06.008
18.
Chang
,
S. W.
,
Liou
,
T.-M.
, and
Po
,
Y.
,
2010
, “
Coriolis and Rotating Buoyancy Effect on Detailed Heat Transfer Distributions in a Two-Pass Square Channel Roughened by 45 deg Ribs at High Rotation Numbers
,”
Int. J. Heat Mass Transfer
,
53
, pp.
1349
1363
.10.1016/j.ijheatmasstransfer.2009.12.024
19.
Chang
,
S. W.
,
Liou
,
T.-M.
, and
Chen
,
W.-C.
,
2012
, “
Influence of Radial Rotation on Heat Transfer in a Rectangular Channel With Two Opposite Walls Roughened by Hemispherical Protrusions at High Rotation Number
,”
ASME J. Turbomach.
,
134
, p.
011010
.10.1115/1.4003231
20.
Editorial Board of ASME Journal of Heat Transfer
,
1993
, “
Journal of Heat Transfer Policy on Reporting Uncertainties in Experimental Measurements and Results
,”
ASME J. Heat Transfer
,
115
, pp
5
6
.10.1115/1.2910670
21.
Chyu
,
M. K.
,
Yen
,
C. H.
, and
Siw
,
S.
,
2007
, “
Comparison of Heat Transfer From Staggered Pin Fin Arrays With Circular, Cubic and Diamond Shaped Element
,”
ASME Turbo Expo., May 14–17, Montreal, Canada, Paper No. GT2007-28306
.
22.
Metzger
,
D. E.
,
Fan
,
C. S.
, and
Haley
,
S. W.
,
1984
, “
Effects of Pin Shape and Array Orientation on Heat Transfer and Pressure Loss in Pin Fin Arrays
,”
ASME J. Heat Transfer
,
106
, pp.
252
257
.10.1115/1.3246648
23.
Jeng
,
T.-M
,
2006
, “
Thermal Performance of In-Line Diamond-Shaped Pin Fins in a Rectangular Duct
,”
Int. Commun. Heat Mass Transfer
,
33
, pp.
1139
1146
.10.1016/j.icheatmasstransfer.2006.06.001
24.
Chang
,
S. W.
,
Yang
,
T. L.
,
Huang
,
C. C.
, and
Chiang
,
K. F.
,
2008
, “
Endwall Heat Transfer and Pressure Drop in Rectangular Channels With Attached and Detached Circular Pin-Fin Array
,”
Int. J. Heat Mass Transfer
,
51
, pp.
5247
5259
.10.1016/j.ijheatmasstransfer.2008.02.046
25.
Elyyan
,
M. A.
, and
Tafti
,
D. K.
,
2012
, “
Investigation of Coriolis Forces Effect of Flow Structure and Heat Transfer Distribution in a Rotating Dimpled Channel
,”
ASME J. Turbomach.
,
134
, p.
031007
.10.1115/1.4003027
You do not currently have access to this content.