This paper describes numerical simulations of the instability mechanisms in a separation bubble subjected to a three-dimensional freestream pressure distribution. Two direct numerical simulations are performed of a separation bubble with laminar separation and turbulent reattachment under low freestream turbulence at flow Reynolds numbers and streamwise pressure distributions that approximate the conditions encountered on the suction side of typical low-pressure gas-turbine blades with blade sweep angles of 0deg and 45deg. The three-dimensional (3D) pressure field in the swept configuration produces a crossflow-velocity component in the laminar boundary layer upstream of the separation point that is unstable to a crossflow instability mode. The simulation results show that crossflow instability does not play a role in the development of the boundary layer upstream of separation. An increase in the amplification rate and the most amplified disturbance frequency is observed in the separated-flow region of the swept configuration and is attributed to boundary-layer conditions at the point of separation that are modified by the spanwise pressure gradient. This results in a slight upstream movement of the location where the shear layer breaks down to small-scale turbulence and modifies the turbulent mixing of the separated shear layer to yield a downstream shift in the time-averaged reattachment location. The results demonstrate that although crossflow instability does not appear to have a noticeable effect on the development of the transitional separation bubble, the 3D pressure field does indirectly alter the separation-bubble development by modifying the flow conditions at separation.

References

References
1.
Mayle
,
R. E.
,
1991
, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
,
113
, pp.
509
536
.10.1115/1.2929110
2.
Hodson
,
H. P.
and
Howell
,
R. J.
,
2005
, “
The Role of Transition in High-Lift Low-Pressure Turbines for Aeroengines
,”
Prog. Aerosp. Sci.
,
41
, pp.
419
454
.10.1016/j.paerosci.2005.08.001
3.
Yaras
,
M. I.
,
2012
, “
Instability and Transition in a Separation Bubble Under a Three-Dimensional Freestream Pressure Distribution
,”
ASME J. Turbomach.
,
134
, p.
031019
.10.1115/1.4000533
4.
Yang
,
Z.
, and
Voke
,
P. R.
,
2001
, “
Large-Eddy Simulation of Boundary-Layer Separation and Transition at a Change of Surface Curvature
,”
J. Fluid Mech.
,
439
, pp.
305
333
.10.1017/S0022112001004633
5.
Volino
,
R. J.
, and
Bohl
,
D. G.
,
2004
, “
Separated Flow Transition Mechanism and Prediction With High and Low Freestream Turbulence Under Low Pressure Turbine Conditions
,”
ASME
Paper No. GT2004-53360. 10.1115/GT2004-53360
6.
Roberts
,
S. K.
, and
Yaras
,
M. I.
,
2005
, “
Modeling Transition in Separated and Attached Boundary Layers
,”
ASME J. Turbomach.
,
127
, pp.
402
411
.10.1115/1.1860570
7.
Pullan
,
G.
, and
Harvey
,
N. W.
,
2007
, “
Influence of Sweep on Axial Flow Turbine Aerodynamics at Midspan
,”
ASME J. Turbomach.
,
129
, pp.
591
598
.10.1115/1.2472397
8.
Roberts
,
S. K.
, and
Yaras
,
M. I.
,
2006
, “
Large-Eddy Simulation of Transition in a Separation Bubble
,”
ASME J. Fluids Eng.
,
128
, pp.
232
238
.10.1115/1.2170123
9.
Hatman
,
A.
, and
Wang
,
T.
,
1998
, “
A Prediction Model for Separated-Flow Transition
,”
ASME J. Turbomach.
,
121
, pp.
594
602
.10.1115/1.2841357
10.
Marxen
,
O.
,
Rist
,
U.
, and
Wagner
,
S.
,
2004
, “
Effect of Spanwise-Modulated Disturbances on Transition in a Separated Boundary Layer
,”
AIAA J.
,
42
, pp.
937
944
.10.2514/1.565
11.
Schlichting
,
H.
,
1968
,
Boundary Layer Theory
,
McGraw-Hill
,
New York
.
12.
Kachanov
,
Y. S.
,
1994
, “
Physical Mechanisms of Laminar Boundary-Layer Transition
,”
Ann. Rev. Fluid Mech.
,
26
, pp.
411
482
.10.1146/annurev.fl.26.010194.002211
13.
Jacobs
,
R. G.
, and
Durbin
,
P. A.
,
2001
, “
Simulations of Bypass Transition
,”
J. Fluid Mech.
,
428
, pp.
185
221
.10.1017/S0022112000002469
14.
McAuliffe
,
B.
, and
Yaras
,
M.
,
2010
, “
Transition Mechanisms in Separation Bubbles Under Low- and Elevated-Freestream Turbulence
,”
ASME J. Turbomach.
,
132
, p.
011004
.10.1115/1.2812949
15.
Abdalla
,
I. E.
, and
Yang
,
Z.
,
2004
, “
Numerical Study of the Instability Mechanism in Transitional Separating-Reattaching Flow
,”
Int. J. Heat Fluid Flow
,
25
, pp.
593
605
.10.1016/j.ijheatfluidflow.2004.01.004
16.
Muti-Lin
,
J. C.
, and
Pauley
,
L. L.
,
1996
, “
Low-Reynolds Number Separation on an Airfoil
,”
AIAA J.
,
34
, pp.
1570
1577
.10.2514/3.13273
17.
Wissink
,
J. G.
, and
Rodi
,
W.
,
2006
, “
Direct Numerical Simulations of Transitional Flow in Turbomachinery
,”
ASME J. Turbomach.
,
128
, pp.
668
678
.10.1115/1.2218517
18.
Ho
,
C. M.
and
Huerre
,
P.
,
1984
, “
Perturbed Free Shear Layers
,”
Ann. Rev. Fluid Mech.
,
16
, pp.
365
424
.10.1146/annurev.fl.16.010184.002053
19.
Jones
,
L. E.
,
Sandberg
,
R. D.
, and
Sandham
,
N. D.
,
2008
, “
Direct Numerical Simulations of Forced and Unforced Separation Bubbles on an Airfoil at Incidence
,”
J. Fluid Mech.
,
602
, pp.
175
207
.10.1017/S0022112008000864
20.
Hammond
,
D. A.
, and
Redekopp
,
L. G.
,
1998
, “
Local and Global Instability Properties of Separation Bubbles
,”
Eur. J. Mech. B/Fluids
,
17
, pp.
145
164
.10.1016/S0997-7546(98)80056-3
21.
Alam
,
M.
and
Sandham
,
N. D.
,
2000
, “
Direct Numerical Simulation of `Short’ Laminar Separation Bubbles With Turbulent Reattachment
,”
J. Fluid Mech.
,
410
, pp.
1
28
.10.1017/S0022112099008976
22.
Saric
,
W. S.
,
Reed
,
H. L.
, and
White
,
E. B.
,
2003
, “
Stability and Transition of Three-Dimensional Boundary Layers
,”
Ann. Rev. Fluid Mech.
,
35
, pp.
413
440
.10.1146/annurev.fluid.35.101101.161045
23.
Gregory
,
N.
,
Stuart
,
J. T.
, and
Walker
,
W. S.
,
1955
, “
On the Stability of Three-Dimensional Boundary Layers With Application to the Flow Due to a Rotating Disk
,”
Philos. Trans. R. Soc. London, Ser. A
,
248
, pp.
155
199
.10.1098/rsta.1955.0013
24.
Nitscke-Kowsky
,
P.
, and
Bippes
,
H.
,
1988
, “
Instability and Transition of a Three-Dimensional Boundary Layer on a Swept Flat Plate
,”
Phys. Fluids
,
31
, pp.
786
795
.10.1063/1.866814
25.
Deyhle
,
H.
, and
Bippes
,
H.
,
1996
, “
Disturbance Growth in an Unstable Three-Dimensional Boundary Layer and its Dependence on Environmental Conditions
,”
J. Fluid Mech.
,
316
, pp.
73
113
.10.1017/S0022112096000456
26.
Radeztsky
,
R. H.
,
Reibert
,
M. S.
, and
Saric
,
W. S.
,
1999
, “
Effect of Micron-Sized Roughness on Transition in Swept-Wing Flows
,”
AIAA J.
,
37
, pp.
1371
1377
.10.2514/2.635
27.
Bippes
,
H.
,
1999
, “
Basic Experiments on Transition in Three-Dimensional Boundary Layers Dominated by Crossflow Instability
,”
Prog. Aerosp. Sci.
,
35
, pp.
363
412
.10.1016/S0376-0421(99)00002-0
28.
Arnal
,
D.
,
Casalis
,
G.
,
Reneaux
,
J.
, and
Cousteix
,
J.
,
1997
, “
Laminar-Turbulent Transition in Subsonic Boundary-Layers: Research and Applications in France
,” AIAA Paper No. 1997-1905.
29.
Horton
,
H. P.
,
1968
, “
Laminar Separation Bubbles in Two and Three Dimensional Incompressible Flow
,” Ph.D. thesis,
University of London, London
.
30.
Hetsch
,
T.
, and
Rist
,
U.
,
2009
, “
An Analysis of the Structure of Laminar Separation Bubbles in Swept Infinite Geometries
,”
Eur. J. Mech. B/Fluids
,
28
, pp.
486
493
.10.1016/j.euromechflu.2009.03.001
31.
Hetsch
,
T.
, and
Rist
,
U.
,
2009
, “
The Influence of Sweep on the Linear Stability of a Series of Swept Laminar Separation Bubbles
,”
Eur. J. Mech. B/Fluids
,
28
, pp.
494
505
.10.1016/j.euromechflu.2009.02.002
32.
Ripley
,
M. D.
, and
Pauley
,
L. L.
,
1993
, “
The Unsteady Structure of Two-Dimensional Steady Laminar Separation
,”
Phys. Fluids A
,
5
, pp.
3099
3106
.10.1063/1.858719
33.
Michelassi
,
V.
,
Wissink
,
J.
, and
Rodi
,
W.
,
2002
, “
Analysis of DNS and LES of Flow in a Low Pressure Turbine Cascade With Incoming Wakes and Comparison With Experiments
,”
Flow, Turbul. Combust.
,
69
, pp.
295
330
.10.1023/A:1027334303200
34.
Rist
,
U.
, and
Augustin
,
K.
,
2006
, “
Control of Laminar Separation Bubbles Using Instability Waves
,”
AIAA J.
,
44
, pp.
2217
2223
.10.2514/1.17518
35.
McAuliffe
,
B. R.
, and
Yaras
,
M. I.
,
2008
, “
Numerical Study of Instability Mechanisms Leading to Transition in Separation Bubbles
,”
ASME J. Turbomach.
,
130
, p.
021006
.10.1115/1.2750680
36.
Azih
,
C.
,
Brinkerhoff
,
J. R.
, and
Yaras
,
M. I.
,
2012
, “
Direct Numerical Simulation of Convective Heat Transfer in a Zero-Pressure-Gradient Boundary Layer With Supercritical Water
,”
J. Therm. Sci.
,
21
, pp.
49
59
.10.1007/s11630-012-0518-5
37.
Yaras
,
M. I.
,
2001
, “
Measurements of the Effects of Pressure-Gradient History on Separation-Bubble Transition
,” ASME Paper No. 2001-GT-0193.
38.
Yaras
,
M. I.
,
2002
, “
Measurements of the Effects of Freestream Turbulence on Separation-Bubble Transition
,”
ASME
Paper No. GT2002-30232. 10.1115/GT2002-30232
39.
Roberts
,
S. K.
, and
Yaras
,
M. I.
,
2005
, “
Boundary Layer Transition Affected by Surface Roughness and Freestream Turbulence
,”
ASME J. Fluids Eng.
,
127
, pp.
449
457
.10.1115/1.1906266
40.
Kim
,
H. T.
,
Kline
,
S. J.
, and
Reynolds
,
W. C.
,
1971
, “
The Production of Turbulence Near a Smooth Wall in a Turbulent Boundary Layer
,”
J. Fluid Mech.
,
50
, pp.
133
160
.10.1017/S0022112071002490
41.
Stanislas
,
M.
,
Perret
,
L.
, and
Foucaut
,
J.-M.
,
2008
, “
Vortical Structures in the Turbulent Boundary Layer: A Possible Route to a Universal Representation
,”
J. Fluid Mech.
,
602
, pp.
327
382
.10.1017/S0022112008000803
42.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
New York
.
43.
Choi
,
H.
, and
Moin
,
P.
,
1994
, “
Effects of the Computational Time Step on Numerical Solutions of Turbulent Flow
,”
J. Comput. Phys.
,
113
, pp.
1
4
.10.1006/jcph.1994.1112
44.
Spalart
,
P. R.
,
1988
, “
Direct Simulation of a Turbulent Boundary Layer up to Reθ = 1410
,”
J. Fluid Mech.
,
187
, pp.
61
98
.10.1017/S0022112088000345
45.
Wu
,
X.
, and
Moin
,
P.
,
2009
, “
Direct Numerical Simulation of Turbulence in a Nominally Zero-Pressure-Gradient Flat-Plate Boundary Layer
,”
J. Fluid Mech.
,
630
, pp.
5
41
.10.1017/S0022112009006624
46.
Djenidi
,
L.
, and
Antonia
,
R. A.
,
1993
, “
LDA Measurements in Low Reynolds Number Turbulent Boundary Layer
,”
Exp. Fluids
,
14
, pp.
280
288
.10.1007/BF00194020
47.
Brinkerhoff
,
J. R.
, and
Yaras
,
M. I.
,
2011
, “
Interaction of Viscous and Inviscid Instability Modes in Separation-Bubble Transition
,”
Phys. Fluids
,
23
, p.
124102
.10.1063/1.3666844
48.
Jones
,
V. P.
, and
Launder
,
B. E.
,
1972
, “
Some Properties of Sink-Flow Turbulent Boundary Layers
,”
J. Fluid Mech.
,
56
, pp.
337
351
.10.1017/S0022112072002903
49.
Escudier
,
M. P.
,
Abdel-Hameed
,
A.
,
Johnson
,
M. W.
, and
Sutcliffe
,
C. J.
,
1998
, “
Laminarisation and Re-Transition of a Turbulent Boundary Layer Subjected to Favourable Pressure Gradient
,”
Exp. Fluids
,
26
, pp.
491
502
.10.1007/s003480050255
You do not currently have access to this content.