Designing turbine components for maximum aerodynamic performance with adequate cooling is a critical challenge for gas turbine engineers, particularly at the endwall of a turbine, due to complex secondary flows. To complicate matters, impurities from the fuel and intake air can deposit on film-cooled components downstream of the combustor. Deposition-induced roughness can reduce cooling effectiveness and aerodynamic performance dramatically. One method commonly used for reducing the effects of secondary flows on aerodynamic performance is endwall contouring. The current study evaluates deposition effects on endwall contouring given the change to the secondary flow pattern. For the current study, deposition was dynamically simulated in a turbine cascade to determine its effects on film-cooling with and without endwall contouring. Computationally predicted impactions were in qualitative agreement with experimental deposition simulations, showing that contouring reduced deposition around strategically placed film-cooling holes. Deposition reduced cooling effectiveness by 50% on a flat endwall and 40% on an identically cooled contoured endwall. Although 40% is still a dramatic reduction in effectiveness, the method of using the endwall contouring to alter deposition effects shows promise.

References

1.
Lawson
,
S. A.
, and
Thole
,
K. A.
,
2010
, “
Simulations of Multi-Phase Particle Deposition on Endwall Film-Cooling
,”
ASME J. Turbomach.
,
134
(1), p.
011003
.10.1115/1.4002962
2.
Harvey
,
N. W.
,
Rose
,
M. G.
,
Taylor
,
M. D.
,
Shahpar
,
S.
,
Hartland
,
J.
, and
Gregory-Smith
,
D. G.
,
2000
, “
Nonaxisymmetric Turbine End Wall Design: Part I— Three-Dimensional Linear Design System
,”
ASME J. Turbomach.
,
122
, pp.
278
285
.10.1115/1.555445
3.
Hartland
,
J.
,
Gregory-Smith
,
D.
,
Harvey
,
N. W.
, and
Rose
,
M. G.
,
2000
, “
Non-Axysymmetric Turbine End Wall Design: Part II—Experimental Validation
,”
ASME J. Turbomach.
,
122
, pp.
286
293
.10.1115/1.555446
4.
Ingram
,
G.
,
Gregory-Smith
,
D.
, and
Harvey
,
N.
,
2005
, “
The Benefits of Turbine Endwall Profiling in a Cascade
,”
Proc. Inst. Mech. Eng., Part A
,
219
(
1
), pp.
49
59
.10.1243/095765005X6863
5.
Praisner
,
T. J.
,
Allen-Bradley
,
E.
,
Grover
,
E. A.
,
Knezevici
,
D. Z.
, and
Sjolander
,
S. A.
,
2007
, “
Application of Non-Axisymmetric Endwall Contouring to Conventional and High-Lift Airfoils
,”
ASME
Paper No. GT2007-27579.10.1115/GT2007-27579
6.
Knezevici
,
D. Z.
,
Sjolander
,
S. A.
,
Praisner
,
T. J.
,
Allen-Bradley
,
E.
, and
Grover
,
E. A.
,
2008
, “
Measurements of Secondary Losses in a Turbine Cascade With the Implementation of Non-Axisymmetric Endwall Contouring
,”
ASME
Paper No. GT2008-5131110.1115/GT2008-51311.
7.
Lynch
,
S. P.
,
Sundaram
,
N.
,
Thole
,
K. A.
,
Kohli
,
A.
, and
Lehane
,
C.
,
2011
, “
Heat Transfer for a Turbine Blade With Non-Axisymmetric Endwall Contouring
,”
ASME J. Turbomach.
,
133
(
1
), p.
011019
.10.1115/1.4000542
8.
Lynch
,
S. P.
,
Thole
,
K. A.
,
Kohli
,
A.
, and
Lehane
,
C.
,
2011
, “
Computational Predictions of Heat Transfer and Film-Cooling for a Turbine Blade With Non-Axisymmetric Endwall Contouring
,”
ASME J. Turbomach.
,
133
(
4
), p.
041003
.10.1115/1.4002951
9.
Lawson
,
S. A.
, and
Thole
,
K. A.
,
2011
, “
The Effects of Simulated Particle Deposition on Film Cooling
,”
ASME J. Turbomach.
,
133
(
2
), p.
021009
.10.1115/1.4000571
10.
Lawson
,
S. A.
, and
Thole
,
K. A.
,
2011
, “
Simulations of Multi-Phase Particle Deposition on Endwall Film-Cooling Holes in Transverse Trenches
,”
ASME
Paper No. GT2011-45190.10.1115/GT2011-45190
11.
Lawson
,
S. A.
, and
Thole
,
K. A.
,
2011
, “
Simulations of Multi-Phase Particle Deposition on a Showerhead With Staggered Film-Cooling Holes
,”
ASME
Paper No. GT2011-45191.10.1115/GT2011-45191
12.
Albert
,
J. E.
,
Keefe
,
K. J.
, and
Bogard
,
D. G.
,
2012
, “
Experimental Simulation of Contaminant Deposition on a Film Cooled Turbine Airfoil Leading Edge
,”
ASME J. Turbomach.
134
(
5
), p.
051014
.10.1115/1.4003964
13.
Richards
,
G. A.
,
Logan
,
R. G.
,
Meyer
,
C. T.
, and
Anderson
,
R. J.
,
1992
, “
Ash Deposition at Coal-Fired Gas Turbine Conditions: Surface and Combustion Temperature Effects
,”
ASME J. Eng. Gas Turbines Power
,
114
, pp.
132
138
.10.1115/1.2906295
14.
Walsh
,
P. M.
,
Sayre
,
A. N.
,
Loehden
,
D. O.
,
Monroe
,
L. S.
,
Beer
,
J. M.
, and
Sarofim
,
A. F.
,
1990
, “
Deposition of Bituminous Coal Ash on an Isolated Heat Exchanger Tube: Effects of Coal Properties on Deposit Growth
,”
Prog. Energy Combust. Sci.
,
16
, pp.
327
345
.10.1016/0360-1285(90)90042-2
15.
Wenglarz
,
R. A.
, and
Wright
,
I. G.
,
2003
, “
Alternate Fuels for Land-Based Turbines
,” Proceedings of the Workshop on Materials and Practices to Improve Resistance to Fuel Derived Environmental Damage in Land-and Sea-Based Turbines,
Golden, CO
,
October 22–24
, pp.
4-45
4-64
.
16.
Ethridge
,
M. I.
,
Cutbirth
,
J. M.
, and
Bogard
,
D. G.
,
2000
, “
Scaling of Performance for Varying Density Ratio Coolants on an Airfoil With Strong Curvature and Pressure Gradient Effects
,”
ASME J. Turbomach.
,
123
, pp.
231
237
.10.1115/1.1343457
17.
Bons
,
J. P.
,
Crosby
,
J.
,
Wammack
,
J. E.
,
Bentley
,
B. I.
, and
Fletcher
,
T. H.
,
2007
, “
High-Pressure Turbine Deposition in Land-Based Gas Turbines From Various Synfuels
,”
ASME J. Eng. Gas Turbines Power
,
129
, pp.
135
143
.10.1115/1.2181181
18.
Li
,
R.
,
Lei
,
W.
,
Yang
,
T.
, and
Raninger
,
B.
,
2007
, “
Investigation of MSWI Fly Ash Melting Characteristic by DSC-DTA
,”
Waste Manage.
,
27
, pp.
1383
1392
.10.1016/j.wasman.2006.11.017
19.
Krishnaiah
,
W.
, and
Singh
,
D. N.
,
2006
, “
Determination of Thermal Properties of Some Supplementary Cementing Materials Used in Cement and Concrete
,”
Constr. Build. Mater.
,
20
, pp.
193
198
.10.1016/j.conbuildmat.2004.10.001
20.
Wang
,
Q.
,
Tian
,
S.
,
Wang
,
Q.
,
Huang
,
Q.
, and
Yang
,
J.
,
2008
, “
Melting Characteristics During the Vitrification of MSWI Fly Ash With a Pilot-Scale Diesel Oil Furnace
,”
J. Hazard. Mater.
,
160
, pp.
375
381
.10.1016/j.jhazmat.2008.03.043
21.
Dennis
,
R. A.
,
Shelton
,
W. W.
, and
Le
,
P.
,
2007
, “
Development of Baseline Performance Values for Turbines in Existing IGCC Applications
,”
ASME
Paper No. GT2007-28096.10.1115/GT2007-28096
22.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
You do not currently have access to this content.