In order to analyze the interaction of multiple rows of film cooling holes in flows at adverse pressure gradients, large-eddy simulations (LESs) are performed. The considered three-row cooling configuration consists of inclined cooling holes at an angle of 30 deg with a lateral pitch of p/D=3 and a streamwise spacing of l/D=6. The cooling holes possess a fan-shaped exit geometry with lateral and streamwise expansions. For each cooling row the complete internal flow is computed. Air and CO2 are injected in order to investigate the influence of an increased density ratio on the film cooling physics at adverse pressure gradients. The CO2 injected at the same blowing rate as air shows a higher magnitude of the Reynolds shear stress component and, thus, an enhanced mixing downstream of the cooling holes. The LES results of the air and CO2 configurations are compared to the corresponding particle-image velocimetry (PIV) measurements and show a convincing agreement in terms of the averaged streamwise velocity and streamwise velocity fluctuations. Furthermore, the cooling effectiveness is investigated for a zero and an adverse pressure gradient configuration with a temperature ratio at gas turbine conditions. For the adverse pressure gradient case, reduced temperature levels off the wall are observed. However, the cooling effectiveness shows only minor differences compared to the zero pressure gradient flow. The turbulent Schmidt number at CO2 injection shows large variations. Just downstream of the injection it attains low values, whereas high values are detected in the upper mixing zone of the cooling flow and the freestream at each film cooling row.

References

References
1.
Goldstein
,
R.
,
Eckert
,
E.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
, pp.
595
607
.10.1016/0017-9310(74)90007-6
2.
Bunker
,
R.
,
2005
, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat Transfer
,
127
, pp.
441
453
.10.1115/1.1860562
3.
Renze
,
P.
,
Schröder
,
W.
, and
Meinke
,
M.
,
2007
, “
Hole Shape Comparison for Film Cooling Flows Using Large-Eddy Simulations,” 45th AIAA Aerospace Sciences Meeting and Exhibit
, AIAA Paper No. 2007-0927.
4.
Jabbari
,
M. Y.
and
Goldstein
,
R. J.
,
1978
, “
Adiabatic Wall Temperature and Heat Transfer Downstream of Injection Through Two Rows of Holes
,”
ASME J. Eng. Power
,
100
, pp.
303
307
.10.1115/1.3446350
5.
Jubran
,
B. A.
and
Maiteh
,
B. Y.
,
1999
, “
Film Cooling and Heat Transfer From a Combination of Two Rows of Simple and/or Compund Angle Holes in Inline and/or Staggered Configuration
,”
Heat Mass Transfer
,
34
, pp.
495
502
.10.1007/s002310050287
6.
Saumweber
,
C.
and
Schulz
,
A.
,
2004
, “
Interaction of Film Cooling Rows: Effects of Hole Geometry and Row Spacing on the Cooling Performance Downstream of the Second Row of Holes
,”
ASME J. Turbomach.
,
126
, pp.
237
246
.10.1115/1.1731395
7.
Martinez-Botas
,
R. F.
, and
Yuen
,
C. H. N.
,
2000
, “
Measurement of Local Heat Transfer Coefficient and Film Cooling Effectiveness Through Discrete Holes
,” ASME Turbo Expo 2000, Paper No. 2000-GT-243.
8.
Harrington
,
M. K.
,
McWaters
,
M. A.
,
Bogard
,
D. G.
,
Lemmon
,
C. A.
, and
Thole
,
K.
,
2001
. “
Full-Coverage Film Cooling With Short Normal Injection Holes
,”
ASME J. Turbomach.
,
123
, pp.
798
805
.10.1115/1.1400111
9.
Gustafsson
,
K. M. B.
, and
Johansson
,
T. G.
,
2001
, “
An Experimental Study of Surface Temperature Distribution on Effusion-Cooled Plates
,”
ASME J. Eng. Gas Turbines Power
,
123
, pp.
308
316
.10.1115/1.1364496
10.
Scrittore
,
J. J.
,
Thole
,
K. A.
, and
Burd
,
S. W.
,
2007
, “
Investigation of Velocity Profiles for Effusion Cooling of a Combustor Liner
,”
ASME J. Turbomach.
,
129
, pp.
518
526
.10.1115/1.2720492
11.
Renze
,
P.
,
Meinke
,
M.
, and
Schröder
,
W.
,
2009
, “
Large-Eddy Simulation of the Interaction of Film Cooling Rows
,” ASME Turbo Expo 2009, Paper No. GT2009-59164.
12.
Jessen
,
W.
,
Konopka
,
M.
, and
Schröder
,
W.
,
2012
, “
Particle-Image Velocimetry Measurements of Film Cooling in an Adverse Pressure Gradient Flow
,”
ASME J. Turbomach.
,
134
, pp.
021025-1
021025-13
.10.1115/1.4003175
13.
Sasaki
,
M.
,
Takahara
,
K.
,
Kumagai
,
T.
, and
Hamano
,
M.
,
1979
, “
Film Cooling Effectiveness for Injection From Multirow Holes
,”
ASME J. Eng. Power
,
101
, pp.
101
108
.10.1115/1.3446430
14.
Hay
,
N.
,
Lampard
,
D.
, and
Saluja
,
C. L.
,
1985
, “
Effects of the Condition of the Approach Boundary Layer and of Mainstream Pressure Gradients on the Heat Transfer Coefficient on Film-Cooled Surfaces
,”
ASME J. Eng. Gas Turbines Power
,
107
, pp.
99
104
.10.1115/1.3239703
15.
Launder
,
B.
, and
York
,
J.
,
1974
, “
Discrete-Hole Cooling in the Presence of Free Stream Turbulence and Strong Favourable Pressure Gradient
,”
Int. J. Heat Mass Transfer
,
17
, pp.
1403
1409
.10.1016/0017-9310(74)90141-0
16.
Kruse
,
H.
,
1985
, “
Effects of Hole Geometry, Wall Curvature and Pressure Gradient on Film Cooling Downstream of a Single Row
,”
AGARD Conference Proceedings No. 390
,
Heat Transfer and Cooling in Gas Turbines
.
17.
Teekaram
,
A. J. H.
,
Forth
,
C. J. P.
, and
Jones
,
T. V.
,
1991
, “
Film Cooling in the Presence of Mainstream Pressure Gradients
,”
ASME J. Turbomach.
,
113
, pp.
484
493
.10.1115/1.2927900
18.
Lutum
,
E.
,
von Wolfersdorf
,
J.
,
Semmler
,
K.
,
Naik
,
S.
, and
Weigand
,
B.
,
2000
, “
Film Cooling on a Convex Surface: Influence of External Pressure Gradient and Mach Number on Film Cooling Performance
,”
Heat Mass Transfer
,
38
, pp.
7
16
.10.1007/s002310000149
19.
Lutum
,
E.
,
von Wolfersdorf
,
J.
,
Semmler
,
K.
,
Naik
,
S.
, and
Weigand
,
B.
,
2003
, “
Film Cooling on a Concave Surface: Influence of External Pressure Gradient on Film Cooling Performance
,” NATO Research and Technology Organization, Report No. RTO-MP-069.
20.
Schwarz
,
S. G.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
,
1991
, “
The influence of Curvature on Film Cooling Performance
,”
ASME J. Turbomach.
,
113
, pp.
472
478
.10.1115/1.2927898
21.
Maiteh
,
B. Y.
, and
Jubran
,
B. A.
,
2004
, “
Effects of Pressure Gradient on Film Cooling Effectiveness From Two Rows of Simple and Compound Angle Holes in Combination
,”
Energy Convers. Manage.
,
45
, pp.
1457
1469
.10.1016/j.enconman.2003.09.007
22.
Leylek
,
J. H.
, and
Zerkle
,
R. D.
,
1994
, “
Discrete-Jet Film Cooling: A Comparison of Computational Results With Experiments
,”
ASME J. Turbomach.
,
116
, pp.
358
368
.10.1115/1.2929422
23.
Silieti
,
M.
,
Kassab
,
A. J.
, and
Divo
,
E.
,
2009
, “
Film Cooling Effectiveness: Comparison of Adiabatic and Conjugate Heat Transfer CFD Models
,”
Int. J. Therm. Sci.
,
48
(
12
), pp.
2237
2248
.10.1016/j.ijthermalsci.2009.04.007
24.
Acharya
,
S.
,
Mayank
,
T.
, and
Hoda
,
A.
,
2001
, “
Flow and Heat Transfer Predictions for Film Cooling
,”
Ann. N.Y. Acad. Sci.
,
934
, pp.
110
125
.10.1111/j.1749-6632.2001.tb05846.x
25.
Renze
,
P.
,
Schröder
,
W.
, and
Meinke
,
M.
,
2008
, “
Large-Eddy Simulation of Film Cooling Flows With Variable Density Jets
,”
Flow, Turbul. Combust.
,
80
, pp.
119
132
.10.1007/s10494-007-9080-8
26.
Renze
,
P.
,
Schröder
,
W.
, and
Meinke
,
M.
,
2008
, “
Large-Eddy Simulation of Film Cooling Flows at Density Gradients
,”
Int. J. Heat Fluid Flow
,
29
(
1
), p.
18
34
.10.1016/j.ijheatfluidflow.2007.07.010
27.
Liou
,
M.
and
Steffen
,
C.
,
1993
, “
A New Flux Splitting Scheme
,”
J. Comput. Phys.
,
107
(
1
), pp.
23
39
.10.1006/jcph.1993.1122
28.
Boris
,
J.
,
Grinstein
,
F.
,
Orana
,
E.
, and
Kolbea
,
R.
,
1992
, “
New Insights Into Large Eddy Simulation
,”
Fluid Dyn. Res.
,
10
, pp.
199
228
.10.1016/0169-5983(92)90023-P
29.
Meinke
,
M.
,
Schröder
,
W.
,
Krause
,
E.
, and
Rister
,
T.
,
2002
, “
A Comparison of Second and Sixth-Order Methods for Large-Eddy Simulations
,”
Comput. Fluids
,
31
, pp.
695
718
.10.1016/S0045-7930(01)00073-1
30.
Mehendale
,
A. B.
,
Han
,
J. C.
,
Ou
,
S.
, and
Lee
,
C. P.
,
1994
, “
Unsteady Wake Over a Linear Turbine Blade Cascade With Air and CO2 Film Injection—Part II: Effect on Film Effectiveness and Heat Transfer Distributions
,”
ASME J. Turbomach.
,
116
, pp.
730
737
.10.1115/1.2929466
31.
El-Askary
,
W. A.
,
Schröder
,
W.
, and
Meinke
,
M.
,
2003
, “
LES of Compressible Wall-Bounded Flows
,”
16th AIAA Computational Fluid Dynamics Conference
, Paper No. AIAA-2003-3554.
32.
Lund
,
T.
,
Xiaohua
,
W.
, and
Squires
,
K. D.
,
1998
, “
Generation of Turbulent Inflow Data for Spatially-Developing Boundary Layer Simulations
,”
J. Comput. Phys.
,
140
(
2
), pp.
233
258
.10.1006/jcph.1998.5882
33.
Guo
,
X.
,
Schröder
,
W.
, and
Meinke
,
M.
,
2006
, “
Large-Eddy Simulations of Film Cooling Flows
,”
Comput. Fluids
,
35
, pp.
587
606
.10.1016/j.compfluid.2005.02.007
34.
Jeong
,
J.
and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
, pp.
69
94
.10.1017/S0022112095000462
35.
Kohli
,
A.
and
Bogard
,
D. G.
,
2005
, “
Turbulent Transport in Film Cooling Flows
,”
ASME J. Heat Transfer
,
127
, pp.
513
519
.10.1115/1.1865221
36.
Nagano
,
Y.
,
Pei
,
C.
, and
Hattori
,
H.
,
2000
, “
A New Low-Reynolds-Number One-Equation Model of Turbulence
,”
Flow, Turbul. Combust.
,
63
, pp.
135
151
.10.1023/A:1009924002401
37.
König
,
D.
,
Schröder
,
W.
, and
Meinke
,
M.
,
2010
, “
Embedded LES-to-RANS Boundary in Zonal Simulations
,”
J. Turbul.
,
11
, Art. No. N7. 10.1080/14685241003698159
38.
Boles
,
J. A.
,
Edwards
,
J. R.
, and
Bauerle
,
R. A.
,
2010
, “
Large-Eddy/Reynolds-Averaged Navier-Stokes Simulations of Sonic Injection Into Mach 2 Crossflow
,”
AIAA J.
,
48
, pp.
1444
1456
.10.2514/1.J050066
You do not currently have access to this content.