Compressor efficiency variation with rotor tip gap is assessed using numerical simulations on an embedded stage representative of that in a large industrial gas turbine with Reynolds number ∼ 2 × 106 to 7 × 106. The results reveal three distinct behaviors of efficiency variation with tip gap. For relatively small tip gap (less than 0.8% span), the change in efficiency with tip gap is nonmonotonic with an optimum tip gap for maximum efficiency. The optimum tip gap is set by two competing flow processes: decreasing tip leakage mixing loss and increasing viscous shear loss at the casing with decreasing tip gap. An optimum tip gap scaling is established and shown to satisfactorily quantify the optimal gap value. For medium tip gap (0.8%–3.4% span), the efficiency decreases approximately on a linear basis with increasing tip clearance. However, for tip gap beyond a threshold value (3.4% span for this rotor), the efficiency becomes less sensitive to tip gap as the blade tip becomes more aft-loaded thus reducing tip flow mixing loss in the rotor passage. The threshold value is set by the competing effects between increasing tip leakage flow and decreasing tip flow induced mixing loss with increasing tip gap. Thus, to desensitize compressor performance variation with blade gap, rotor should be tip aft-loaded and hub fore-loaded while stator should be tip fore-loaded and hub aft-loaded as much as feasible. This reduces the opportunity for clearance flow mixing loss and maximizes the benefits of reversible work from unsteady effects in attenuating the clearance flow through the downstream blade-row. The net effect can be an overall compressor performance enhancement in terms of efficiency, pressure rise capability, robustness to end gap variation, and potentially useful operable range broadening.

References

References
1.
Koch
,
C.
, and
Smith
,
L.
,
1976
, “
Loss Sources and Magnitudes in Axial-Flow Compressors
,”
ASME J. Eng. Power
,
98
, pp.
411
424
.10.1115/1.3446202
2.
Cumpsty
,
N. A.
,
2004
,
Compressor Aerodynamics
,
Krieger Publishing Company
,
Malabar, FL
.
3.
Wennerstrom
,
A. J.
,
1984
, “
Experimental Study of a High-Throughflow Transonic Axial Compressor Stage
,”
ASME J. Eng. Gas Turbines Power
,
106
, pp.
552
559
.10.1115/1.3239606
4.
Williams
,
R. J.
,
Gregory-Smith
,
D. G.
,
He
,
L.
, and
Ingram
,
G.
,
2010
, “
Experiments and Computations on Large Tip Clearance Effects in a Linear Cascade
,”
ASME J. Turbomach.
,
132
, p.
021018
.10.1115/1.3104611
5.
Valkov
,
T.
, and
Tan
,
C. S.
,
1999
, “
Effects of Upstream Rotor Vortical Disturbances on Time-Average Performance of Axial Compressor Stator: Part 1—Framework of Technical Approach and Rotor Wakes-Stator Blade Interactions
,”
ASME J. Turbomach.
,
121
(
3
), pp.
377
386
.10.1115/1.2841330
6.
Valkov
,
T.
, and
Tan
,
C. S.
,
1999
, “
Effects of Upstream Rotor Vortical Disturbances on Time-Average Performance of Axial Compressor Stator: Part 2—Rotor Tip Leakage and Discrete Streamwise Vortex-Stator Blade Interaction
,”
ASME J. Turbomach.
,
121
(
3
), pp.
387
397
.10.1115/1.2841331
7.
Sirakov
,
B. T.
, and
Tan
,
C. S.
,
2003
, “
Effect of Unsteady Stator Wake—Rotor Double-Leakage Tip Clearance Flow Interaction on Time-Average Compressor Performance
,”
ASME J. Turbomach.
,
125
, pp.
465
474
.10.1115/1.1574822
8.
Bae
,
J.
,
Breuer
,
K.
, and
Tan
,
C. S.
,
2005
, “
Active Control of Tip Clearance Flow in Axial Compressors
,”
ASME J. Turbomach.
,
127
(
1
), pp.
352
362
.10.1115/1.1776584
9.
Eulitz
,
F.
,
Kuesters
,
B.
,
Mildner
,
F.
,
Mittelbach
,
M.
,
Peters
,
A.
,
van den Toorn
,
B.
,
Waltke
,
U.
,
Rimmington
,
P.
, and
Wasdell
,
D.
,
2007
, “
Design and Validation of a Compressor for a New Generation of Heavy-Duty Gas Turbines
,”
ASME
Paper No. POWER2007-22100.10.1115/POWER2007-22100
10.
Adamczyk
,
J.
,
2000
, “
Aerodynamic Analysis of Multistage Turbomachinery Flows in Support of Aerodynamic Design
,”
ASME J. Turbomach.
,
122
, pp.
189
217
.10.1115/1.555439
11.
Kulkarni
,
S.
,
2011
, “
Development of a Methodology to Estimate Aero-Performance of a Multistage Axial Compressor, Including Aero-Operbility Limits
,” M.S. thesis,
Department of Mechanical Engineering, Case Western Reserve University
,
Cleveland, OH
.
12.
Belamri
,
T.
,
Galpin
,
P.
,
Braune
,
A.
, and
Cornelius
,
C.
,
2005
, “
CFD Analysis of 15 Stage Axial Compressor Part I: Methods
,”
ASME
Paper No. GT2005-6826110.1115/GT2005-68261.
13.
Belamri
,
T.
,
Galpin
,
P.
,
Braune
,
A.
, and
Cornelius
,
C.
,
2005
, “
CFD Analysis of 15 Stage Axial Compressor: Part II—Results
,”
ASME
Paper No. GT2005-68262.10.1115/GT2005-68262
14.
Menter
,
F. R.
,
Langtry
,
R. B.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
,
Huang
,
P. G.
, and
Volker
,
S.
,
2004
, “
A Correlation-Based Transition Model Using Local Variables: Part I—Model Formulation
,”
ASME
Paper No. GT2004-5345210.1115/GT2004-53452.
15.
Menter
,
F. R.
,
Langtry
,
R. B.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
,
Huang
,
P. G.
, and
Volker
,
S.
,
2004
, “
A Correlation-Based Transition Model Using Local Variables: Part II—Test Cases and Industrial Applications
,”
ASME
Paper No. GT2004-5345410.1115/GT2004-53454.
16.
Menter
,
F. R.
,
Langtry
,
R. B.
,
Volker
,
S.
, and
Yakubov
,
S.
,
2007
, “
Enhanced Modeling of Flow Reattachment With Application to Axial Compressor Blades
,” ASME Paper No. GT2007-27899.
17.
Cumpsty
,
N. A.
, and
Horlock
,
J. H.
,
2006
, “
Averaging Nonuniform Flow for a Purpose
,”
ASME J. Turbomach.
,
128
, pp.
120
129
.10.1115/1.2098807
18.
Zlatinov
,
M.
,
Tan
,
C. S.
,
Montgomery
,
M.
,
Islam
,
T.
, and
Seco-Soley
,
M.
,
2011
, “
Turbine Hub and Shroud Sealing Flow Loss Mechanisms
,”
ASME
Paper No. GT2011-46718.10.1115/GT2011-46718
19.
Khalid
,
S.
,
Khalsa
,
A.
,
Waitz
,
I.
,
Tan
,
C.
,
Greitzer
,
E.
,
Cumpsty
,
N.
,
Adamczyk
,
J.
, and
Marble
,
F.
,
1999
, “
Endwall Blockage in Axial Compressors
,”
ASME J. Turbomach.
,
121
, pp.
499
509
.10.1115/1.2841344
20.
Sakulkaew
,
S.
,
2012
, “
Effects of Rotor Tip Clearance on an Embedded Compressor Stage Performance
,” M.S. thesis,
Department of Mechanical Engineering, MIT
,
Cambridge, MA
.
21.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachinery
,”
ASME J. Turbomach.
,
115
, pp.
621
656
.10.1115/1.2929299
22.
Lei
,
V. M.
,
Spakovszky
,
Z. S.
, and
Greitzer
,
E. M.
,
2008
, “
A Criterion for Axial Compressor Hub-Corner Stall
,”
ASME J. Turbomach.
,
130
, p.
031006
.10.1115/1.2775492
23.
McDougall
,
N. M.
,
Cumpsty
,
N. A.
, and
Hynes
,
T. P.
,
1990
, “
Stall Inception in Axial Compressors
,”
ASME J. Turbomach.
,
112
, pp.
116
125
.10.1115/1.2927406
24.
Storer
,
J. A.
, and
Cumpsty
,
N. A.
,
1991
, “
Tip Leakage Flow in Axial Compressors
,”
ASME J. Turbomach.
,
113
(
2
), pp.
252
259
.10.1115/1.2929095
25.
Intaratep
,
N.
,
2006
, “
Formation and Development of the Tip Leakage Vortex in a Simulated Axial Compressor With Unsteady Inflow
,” Ph.D. thesis,
Virginia Polytechnic Institute and State University
,
Blacksburg, VA
.
26.
Valkov
,
T.
,
1977
, “
The Effect of Upstream Rotor Vortical Disturbances on the Time-Average Performance of Axial Compressor Stators
,” Ph.D. thesis,
Department of Aeronautics and Astronautics, MIT
,
Cambridge, MA
.
27.
Smith
,
L. H.
,
1966
, “
Wake Dispersion in Turbomachines
,”
ASME J. Basic Eng.
,
88
, pp.
688
690
.10.1115/1.3645942
28.
Wisler
,
D. C.
,
1981
, “
Core Compressor Exit Stage Study
,” NASA-CR-165553, NAS 1.26:165554, GE-R81AEG288.
You do not currently have access to this content.