The pressure drop and heat transfer in a two pass internal cooling channel with two different bend geometries is experimentally studied with the goal of improving the thermal performance factor (TPF) in the coolant channel. The geometries studied are (1) a baseline U-bend geometry with a rectangular divider wall, (2) a symmetrical bulb at the end of the divider wall, and (3) a combination of the symmetrical bulb and a bow on the opposite outer wall leading to a shaped flow contraction and expansion in the bend. Tests are conducted for four Reynolds number ranging from 10,000 to 55,000. The symmetrical bulb eliminates the separation due to the sharp turn and makes the heat transfer distribution in the bend portion more uniform. This modification reduces the bend pressure drop by 37% and augments the TPF by nearly 29% compared to the baseline case. The combination of bulb and bow case increases the local heat transfer in the bend region significantly, and reduces the bend pressure drop by nearly 27% leading to an augmentation of the TPF of 32% compared to the baseline case. These improvements in TPF point to the benefits of using the improved bend designs in internal cooling channels.

References

References
1.
Cheah
,
S. C.
,
Iacovides
,
H.
,
Jackson
,
D. C.
,
Ji
,
H. H.
, and
Launder
,
B. E.
,
1996
, “
LDA Investigation of the Flow Development Through Rotating U-ducts
”,
J. Turbomach.
,
118
, pp.
590
596
.10.1115/1.2836706
2.
Schabacker
,
J.
,
Bolcs
,
A.
, and
Johnson
,
B.,V.
,
1998
, “
PIV Investigation of the Flow Characteristics in an Internal Coolant Passage With Two Ducts Connected by a Sharp 180 deg Bend
,”
Proceedings of the ASME Turbo Expo 1998
, Paper No. GT1998-544,
Stockholm, Sweden
.
3.
Liou
,
T. M.
, and
Chen
C. C.
,
1999
, “
LDV Study of Developing Flow Through a Smooth Duct With a 180 deg Straight-Corner Turn
,”
J. Turbomach.
,
121
, pp.
167
174
.10.1115/1.2841228
4.
Metzger
,
D. E.
,
Plevich
,
C. W.
, and
Fan
,
C. S.
,
1984
, “
Pressure Loss Through Sharp 180 deg Turns in Smooth Rectangular Channels
,”
J. Eng. Gas Turbine Power
,
106
, pp.
677
681
.10.1115/1.3239623
5.
Metzger
,
D. E.
, and
Plevich
,
C. W.
,
1990
, “
Effects of Turn Region Treatments on Pressure Loss Through Sharp 180 deg Bends
,”
Proceedings of Third International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC-3)
, pp.
301
312
.
6.
Wang
,
T. S.
, and
Chyu
,
M. K.
,
1994
, “
Heat Convection in a 180 deg Turning Duct With Different Turn Configurations
,”
J. Thermophys. Heat Transfer
,
8
, pp.
595
601
.10.2514/3.583
7.
Liou
,
T. M.
,
Tzeng
,
Y. Y.
, and
Chen
,
C. C.
,
1999
, “
Fluid Flow in a 180 deg Sharp Turning Duct With Different Divider Thicknesses
,”
J. Turbomach.
,
121
, pp.
569
576
.10.1115/1.2841354
8.
Liou
,
T. M.
,
Chen
,
C. C.
,
Tzeng
,
Y. Y.
, and
Tsai
,
T. W.
,
2000
, “
Non-Intrusive Measurements of Near-Wall Fluid Flow and Surface Heat Transfer in a Serpentine Passage
,”
Int. J. Heat Mass Transfer
,
43
, pp.
3233
3244
.10.1016/S0017-9310(99)00336-1
9.
Hirota
,
M.
,
Fujita
,
H.
,
Syuhada
,
A.
,
Araki
,
S.
,
Yoshida
,
T.
, and
Tanaka
,
T.
,
1999
, “
Heat/Mass Transfer Characteristics in Two-Pass Smooth Channels With a Sharp 180-Deg Turn
,”
Int. J. Heat Mass Transfer
,
42
, pp.
3757
3770
.10.1016/S0017-9310(99)00057-5
10.
Nakayama
,
H.
,
Hirota
,
M.
,
Fujita
,
H.
,
Yamada
,
T.
, and
Koide
,
Y.
,
2006
, “
Fluid Flow and Heat Transfer in Two-Pass Smooth Rectangular Channels With Different Turn Clearances
,”
J. Turbomach.
,
128
, pp.
772
785
.10.1115/1.2101854
11.
Hirota
,
M.
,
Fujita
,
H.
,
Cai
,
L.
,
Nakayama
,
H.
,
Yanagida
,
M.
, and
Syafa'at
,
A.
,
2002
, “
Heat(mass) Transfer in Rectangular Cross-sectioned Two-Pass Channels With an Inclined Divider Wall
,”
Int. J. Heat Mass Transfer
,
45
, pp.
1093
1107
.10.1016/S0017-9310(01)00212-5
12.
Rao
,
D. V. R.
,
Babu
,
C. S.
, and
Prabhu
,
S. V.
,
2004
, “
Effect of Turn Region Treatments on the Pressure Loss Distribution in a Smooth Square Channel With a Sharp 180 deg Bend
,”
Int. J. Rotating Mach.
,
10
, pp.
459
468
. 10.1155/S1023621X04000454
13.
Luo
,
J.
, and
Razinsky
,
E. H.
,
2009
, “
Analysis of Turbulent Flow in 180 deg Turning Ducts With and Without Guide Vanes
,”
J. Turbomach.
,
131
, pp.
021011-1
021011-10
.10.1115/1.2987239
14.
Zehnder
,
F.
,
Schuler
,
M.
,
Weigand
,
B.
,
Wolfersdorf
,
J. V.
, and
Neumann
,
S. O.
,
2011
, “
The Effect of Turning Vanes on Pressure Loss and Heat Transfer of a Ribbed Rectangular Two-Pass Internal Cooling Channel
,”
J. Turbomach.
,
133
, pp.
021017-1
021017-10
. 10.1115/1.4000550
15.
Chen
,
W.
,
Ren
,
J.
, and
Jiang
,
H.
,
2011
, “
Effect of Turning Vane Configurations on Heat Transfer and Pressure Drop in a Ribbed Internal Cooling System
,”
J. Turbomach.
,
133
, pp.
041012-1
041012-11
.10.1115/1.4002989
16.
Namgoong
,
H.
,
Son
,
C.
, and
Ireland
,
P.
,
2008
, “
U-Bend Shaped Turbine Blade Cooling Passage Optimization
,”
12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
,
Victoria, Canada
.
17.
Chang
,
S. W.
, and
Cai
,
Z. X.
,
2010
, “
Heat Transfer and Pressure Drop in Two-Pass Rib-Roughened Square Channels With Bleed From Sharp Bend
,”
Int. J. Heat Fluid Flow
,
31
, pp.
19
31
.10.1016/j.ijheatfluidflow.2009.11.001
18.
Schuler
,
M.
,
Zehnder
,
F.
,
Weigand
,
B.
,
Wolfersdorf
,
J. V.
, and
Neumann
,
S.,O.
,
2011
, “
The Effect of Side Wall Mass Extraction on Pressure Loss and Heat Transfer of a Ribbed Rectangular Two-Pass Internal Cooling Channel
,”
J. Turbomach.
,
133
, pp.
021002-1
021002-11
. 10.1115/1.4000552
19.
Saha
,
K.
, and
Acharya
,
S.
,
2011
, “
Effect of Bend Geometry on Heat Transfer and Pressure Drop in a Two-Pass Coolant Square Channel for a Turbine
,”
J. Turbomach.
(in press). 10.1115/1.4006665
20.
Vedula
,
R. J.
, and
Metzger
,
D. E.
,
1991
, “
A Method for the Simultaneous Determination of Local Effectiveness and Heat Transfer Distributions in Three Temperature Convection Situations
,” ASME Paper No. 91-GT-345.
21.
Metzger
,
D. E.
,
Bunker
,
R. S.
, and
Bosch
,
G.
,
1991
, “
Transient Liquid Crystal Measurement of Local Heat Transfer on a Rotating Disk With Jet Impingement
,”
J. Turbomach.
,
113
, pp.
52
59
.10.1115/1.2927737
22.
Vogel
,
G.
, and
Weigand
,
B.
,
2001
, “
A New Evaluation Method for Transient Liquid Crystal Experiments
,”
National Heat Transfer Conference
, NHTC2001-20250,
CA
.
23.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
ASME Mech. Eng.
,
75
, pp.
3
8
. 10.1115/1.4000549
24.
Wilcox
,
D. C.
,
2006
,
Turbulence Modeling for CFD
,
3rd ed.
,
DCW Industries
.
25.
Fluent Inc., 2006, FLUENT 6.3 User's Guide.
26.
Acharya
,
S.
,
Baliga
,
B.
,
Karki
,
K.
,
Murthy
,
J.
,
Prakash
,
C.
, and
Vanka
,
S. P.
,
2007
, “
Pressure-Based Finite Volume Methods in Computational Fluid Dynamics
,”
J. Heat Transfer
,
129
, pp.
407
424
.10.1115/1.2716419
27.
Dittus
,
F. W.
, and
Boelter
,
L. M. K. G.
,
1930
,
Publications on Engineering
, Vol.
2
,
University of California at Berkeley
,
Berkeley, CA
, pp.
443
461
.
28.
Dean
,
W. R.
,
1928
, “
Fluid Motion in a Curved Channel
,”
Proc. R. Soc. London, Ser. A, Containing Papers of a Mathematical and Physical Character
,
121
(
787
), pp.
402
420
.10.1098/rspa.1928.0205
29.
Kobayashi
,
M.
,
Maekawa
,
H.
,
Takano
,
T.
, and
Kobayashi
,
M.
,
1994
, “
Experimental Study of Turbulent Heat Transfer in a Two-Dimensional Curved Channel: Time-Mean Temperature and Multiple Temperature/Velocity Correlations in the Entrance Section
,”
JSME Int. J. Ser. B: Fluids and Thermal Eng.
,
37
, pp.
545
553
.10.1299/jsmeb.37.545
30.
Ligrani
,
P. M.
, and
Hedlund
,
C. R.
,
1998
, “
Transition to Turbulent Flow in Curved and Straight Channels With Heat Transfer at High Dean Numbers
,”
Int. J. Heat and Mass Transfer
,
41
, pp.
1739
1748
.10.1016/S0017-9310(97)00264-0
31.
Ligrani
,
P. M.
, and
Hedlund
,
C. R.
,
2004
, “
Experimental Surface Heat Transfer and Flow Structure in a Curved Channel With Laminar, Transitional, and Turbulent Flows
,”
J. Turbomach.
,
126
, pp.
414
423
.10.1115/1.1738119
32.
Kays
,
W. M.
, and
Crawford
,
M. E.
,
1993
,
Convective Heat and Mass Transfer
,
3rd ed.
,
McGraw-Hill
,
New York
.
33.
Webb
,
R. L.
,
1981
, “
Performance Evaluation Criteria for Use of Enhanced Heat Transfer Surfaces in Heat Exchanger Design
,”
Int. J. Heat and Mass Transfer
,
24
, pp.
715
726
.10.1016/0017-9310(81)90015-6
34.
Ligrani
,
P. M.
,
Oliveira
,
M. M.
, and
Blaskovich
,
T.
,
2003
, “
Comparison of Heat Transfer Augmentation Techniques
,”
AIAA J.
,
41
(
3
), pp.
337
362
.10.2514/2.1964
You do not currently have access to this content.