Stagnation region heat transfer coefficients are obtained from jet impingement onto a concave surface in this experimental investigation. A single row of round jets impinge on the cylindrical target surface to replicate leading edge cooling in a gas turbine airfoil. A modified, transient lumped capacitance experimental technique was developed (and validated) to obtain stagnation region Nusselt numbers with jet-to-target surface temperature differences ranging from 60 °F (33.3 °C) to 400 °F (222.2 °C). In addition to varying jet temperatures, the jet Reynolds number (5000–20,000), jet-to-jet spacing (s/d = 2–8), jet-to-target surface spacing (ℓ/d = 2–8), and impingement surface diameter-to-jet diameter (D/d = 3.6, 5.5) were independently varied. This parametric investigation has served to develop and validate a new experimental technique, which can be used for investigations involving large temperature differences between the surface and fluid. Furthermore, the study has broadened the range of existing correlations currently used to predict heat transfer coefficients for leading edge jet impingement.

References

References
1.
Han
,
J. C.
,
Sandip
,
D.
, and
Ekkad
,
S.
,
2000
,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor and Francis
,
New York.
2.
Goldstein
,
R. J.
, and
Behbahani
,
A. I.
,
1982
, “
Impingement of a Circular Jet With and Without Cross Flow
,”
Int. J. Heat Mass Transfer
,
25
, pp.
1377
1382
.10.1016/0017-9310(82)90131-4
3.
Kercher
,
D. M.
, and
Tabakoff
,
W.
,
1970
, “
Heat Transfer by a Square Array of Round Air Jets Impinging Perpendicular to a Flat Surface Including the Effect of Spent Air
,”
ASME J. Eng. Power
,
92
, pp.
73
82
.10.1115/1.3445306
4.
Florschuetz
,
L. W.
,
Truman
,
C. R.
, and
Metzger
,
D. E.
,
1981
, “
Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Crossflow
,”
ASME J. Heat Transfer
,
103
, pp.
337
342
.10.1115/1.3244463
5.
San
,
J. Y.
, and
Lai
,
M. D.
,
2001
, “
Optimum Jet-to-Jet Spacing of Heat Transfer for Staggered Arrays of Impinging Air Jets
,”
Int. J. Heat Mass Transfer
,
44
, pp.
3997
4007
.10.1016/S0017-9310(01)00043-6
6.
Chupp
,
R. E.
,
Helms
,
D. E.
,
McFadden
,
P. W.
, and
Brown
,
T. R.
,
1969
, “
Evaluation of Internal Heat Transfer Coefficients for Impingement Cooled Turbine Airfoils
,”
AIAA J.
,
6
(
3
), pp.
203
208
.10.2514/3.44036
7.
Hrycak
,
P.
,
1981
, “
Heat Transfer from a Row of Impinging Jets to Concave Cylindrical Surfaces
,”
Int. J. Heat Mass Transfer
,
24
, pp.
407
419
.10.1016/0017-9310(81)90048-X
8.
Fénot
,
M.
,
Dorignac
,
E.
, and
Vullierme
,
J.-J.
,
2008
, “
An Experimental Study on Hot Round Jets Impinging on a Concave Surface
,”
Int. J. Heat Fluid Flow
,
29
, pp.
945
956
.10.1016/j.ijheatfluidflow.2008.03.015
9.
Metzger
,
D. E.
,
Yamashita
,
T.
, and
Jenkins
,
C. W.
,
1969
, “
Impingement Cooling of Concave Surfaces With Lines of Circular Air Jets
,”
ASME J. Eng. Power
,
91
(
3
), pp.
149
158
.10.1115/1.3574713
10.
Tabakoff
,
W.
, and
Clevenger
,
W.
,
1972
, “
Gas Turbine Blade Heat Transfer Augmentation by Impingement of Air Jets Having Various Configurations
,”
ASME J. Eng. Power
,
94
(
1
), pp.
51
60
.10.1115/1.3445620
11.
Bunker
,
R. S.
, and
Metzger
,
D. E.
,
1990
, “
Local Heat Transfer in Internally Cooled Turbine Airfoil Leading Edge Regions: Part 1—Impingement Cooling Without Film Coolant Extraction
,”
ASME J. Turbomach.
,
112
, pp.
451
458
.10.1115/1.2927680
12.
Metzger
,
D. E.
,
Baltzer
,
R. T.
, and
Jenkins
,
C. W.
,
1972
, “
Impingement Cooling Performance in Gas Turbine Airfoils Including Effects of Leading Edge Sharpness
,”
ASME J. Eng. Power
,
94
(
3
), pp.
219
225
.10.1115/1.3445676
13.
Taslim
,
M. E.
, and
Khanicheh
,
A.
,
2006
, “
Experimental and Numerical Study of Impingement on an Airfoil Leading Edge With and Without Showerhead and Gill Film Holes
,”
ASME J. Turbomach.
,
128
, pp.
310
320
.10.1115/1.2137742
14.
Taslim
,
M. E.
,
Setayeshgar
,
L.
, and
Spring
,
S. D.
,
2001
, “
An Experimental Evaluation of Advanced Leading Edge Impingement Cooling Concepts
,”
ASME J. Turbomach.
,
123
, pp.
147
153
.10.1115/1.1331537
15.
Taslim
,
M. E.
,
Bakhtari
,
K.
, and
Liu
,
H.
,
2003
, “
Experimental and Numerical Investigation of Impingement on a Rib-Roughened Leading-Edge Wall
,”
ASME J. Turbomach.
,
125
, pp.
682
691
.10.1115/1.1624848
16.
Taslim
,
M. E.
,
Pan
,
Y.
, and
Spring
,
S. D.
,
2001
, “
An Experimental Study of Impingement on Roughened Airfoil Leading Edge Walls With Film Holes
,”
ASME J. Turbomach.
,
123
, pp.
766
773
.10.1115/1.1401035
17.
Martin
,
E. L.
,
Wright
,
L. M.
, and
Crites
,
D. C.
,
2012
, “
Development of an Experimental Technique for High Temperature Impingement Studies
,”
Proceedings of 2012 International Council of the Aeronautical Sciences (ICAS), Brisbane, Australia, September 23–28
(accepted).
18.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
1999
,
Experimentation and Uncertainty Analysis for Engineers
,
Wiley
,
New York.
19.
Lee
,
D. H.
,
Chung
,
Y. S.
, and
Won
,
S. Y.
,
1999
, “
The Effect of Concave Surface Curvature on Heat Transfer From a Fully Developed Round Impinging Jet
,”
Int. J. Heat Mass Transfer
,
42
, pp.
2489
2497
.10.1016/S0017-9310(98)00318-4
You do not currently have access to this content.