Measurements of the 3D velocity and concentration fields were obtained using magnetic resonance imaging for a pressure-side cutback film cooling experiment. The cutback geometry consisted of rectangular slots separated by straight lands; inside each of the slots was an airfoil-shaped blockage. The results from this trailing edge configuration, the “island airfoil,” are compared to the results obtained with the “generic airfoil,” a geometry with narrower slots, wider, tapered lands, and no blockages. The objective was to determine how the narrower lands and internal blockages affected the average film cooling effectiveness and the spanwise uniformity. Velocimetry data revealed that strong horseshoe vortices formed around the blockages in the slots, which resulted in greater coolant nonuniformity on the airfoil breakout surface and in the wake. The thinner lands of the island airfoil allowed the coolant to cover a larger fraction of the trailing edge span, giving a much higher spanwise-averaged surface effectiveness, especially near the slot exit where the generic airfoil lands are widest.

References

References
1.
Holloway
,
D.
,
Leylek
,
J.
, and
Buck
,
F.
,
2002
, “
Pressure-Side Bleed Film Cooling: Part I—Steady Framework for Experimental and Computational Results
,”
ASME Turbo Expo
, June 3,
ASME
Paper No. GT2002-30471.10.1115/GT2002-30471
2.
Holloway
,
D.
,
Leylek
,
J.
, and
Buck
,
F.
,
2002
, “
Pressure-Side Bleed Film Cooling: Part II—Unsteady Framework for Experimental and Computational Results
,”
ASME Turbo Expo
, June 3,
ASME
Paper No. GT2002-30472. 10.1115/GT2002-30472
3.
Martini
,
P.
, and
Schulz
,
A.
,
2004
, “
Experimental and Numerical Investigation of Trailing Edge Film Cooling by Circular Coolant Wall Jets Ejected From a Slot With Internal Rib Arrays
,”
ASME J. Turbomach.
,
126
, pp. 229–236.10.1115/1.1645531
4.
Joo
,
J.
, and
Durbin
,
P.
,
2009
, “
Simulation of Turbine Blade Trailing Edge Cooling
,”
ASME J. Fluid. Eng.
,
131
(
2
), p. 021102.10.1115/1.3054287
5.
Martini
,
P.
,
Schulz
,
A.
,
Bauer
,
H.-J.
, and
Whitney
,
C.
,
2006
, “
Detached Eddy Simulation of Film Cooling Performance on the Trailing Edge Cutback of Gas Turbine Airfoils
,”
ASME J. Turbomach.
,
128
(2), pp. 292–299. 10.1115/1.2137739
6.
Medic
,
G.
, and
Durbin
,
P.
,
2005
, “
Unsteady Effects on Trailing Edge Cooling
,”
ASME J. Heat Transfer
,
127
(4)
, pp.
388
392
.10.1115/1.1860565
7.
Yuan
,
H.
,
Zhu
,
H.
,
Kong
,
M.
, and
Liu
,
H.
,
2009
, “
Unsteady Numerical Investigation of Back-Step Three-Dimensional Slots on Film Cooling Effectiveness
,”
Heat Transf. Asian Res.
,
38
(1), pp. 15–24.10.1002/htj.20236
8.
Schneider
,
H.
,
Bauer
,
H.
,
von Terzi
,
D.
, and
Rodi
,
W.
,
2012
, “
Coherent Structures in Trailing-Edge Cooling and the Challenge for Turbulent Heat Transfer Modelling
,”
ASME Turbo Expo 2012
, Copenhagen, Denmark, June 11–15, ASME Paper GT2012-69771.
9.
Choi
,
J.
,
Mhetras
,
S.
,
Han
,
J.-C.
,
Lau
,
S.
, and
Rudolph
,
R.
,
2008
, “
Film Cooling and Heat Transfer on Two Cutback Trailing Edge Models With Internal Perforated Blockages
,”
ASME J. Heat Trans
,
130
(
1
), p. 012201.10.1115/1.2780174
10.
Martini
,
P.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
,
2006
, “
Film Cooling Effectiveness and Heat Transfer on the Trailing Edge Cutback of Gas Turbine Airfoils With Various Internal Cooling Designs
,”
ASME J. Turbomach.
,
128
(1)
, pp.
196
205
.10.1115/1.2103094
11.
Horbach
,
T.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
,
2009
, “
Trailing Edge Film Cooling of Gas Turbine Airfoils Effects of Ejection Lip Geometry on Film Cooling Effectiveness and Heat Transfer
,”
International Symposium on Heat Transfer in Gas Turbine Systems
, Antalya, Turkey, August 9–14.
12.
Horbach
,
T.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
,
2011
, “
Trailing Edge Film Cooling of Gas Turbine Airfoils External Cooling Performance of Various Internal Pin Fin Configurations
,”
ASME J. Turbomach.
,
133
(
4
), p. 041006.10.1115/1.4002964
13.
Benson
,
M.
,
Elkins
,
C.
, and
Eaton
,
J.
,
2011
, “
Measurements of 3D Velocity and Scalar Field for a Film-Cooled Airfoil Trailing Edge
,”
Exp Fluids
,
51
, pp.
443
455
.10.1007/s00348-011-1062-x
14.
Fiala
,
N.
,
Johnson
,
J.
, and
Ames
,
F.
,
2010
, “
Aerodynamics of a Letterbox Trailing Edge: Effects of Blowing Rate, Reynolds Number, and External Turbulence on Aerodynamic Losses and Pressure Distribution
,”
ASME J. Turbomach.
,
132
(
4
), p. 041011.10.1115/1.3195035
15.
Fiala
,
N.
,
Jaswal
,
I.
, and
Ames
,
F.
,
2010
, “
Letterbox Trailing Edge Heat Transfer: Effects of Blowing Rate, Reynolds Number, and External Turbulence on Heat Transfer and Film Cooling Effectiveness
,”
ASME J. Turbomach.
,
132
(
11
), p. 011017.10.1115/1.3106703
16.
Benson
,
M.
,
Elkins
,
C.
,
Mobley
,
P.
,
Alley
,
M.
, and
Eaton
,
J.
,
2010
, “
Three-Dimensional Concentration Field Measurements in a Mixing Layer Using Magnetic Resonance Imaging
,”
Exp. Fluids
,
49
, pp.
43
55
.10.1007/s00348-009-0763-x
17.
Elkins
,
C.
,
Markl
,
M.
,
Pelc
,
N.
, and
Eaton
,
J.
,
2003
, “
4D Magnetic Resonance Velocimetry for Mean Velocity Measurements in Complex Turbulent Flows
,”
Exp. Fluids
,
34
(4)
, pp.
494
503
.10.1007/s00348-003-0587-z
18.
Benson
,
M.
,
Elkins
,
C.
, and
Eaton
,
J.
,
2011
, “
3D Velocity and Scalar Field Diagnostics Using Magnetic Resonance Imaging With Applications in Film-Cooling
,”
Stanford University
,
Stanford, CA
, Turbulent Flow Report 123.
19.
Chen
,
Y.
,
Matalanis
,
C.
, and
Eaton
,
J.
,
2008
, “
High Resolution PIV Measurements Around a Model Turbine Blade Trailing Edge Film-Cooling Breakout
,”
Exp Fluids
,
44
, pp.
199
209
.10.1007/s00348-007-0391-2
20.
Pelc
,
N.
,
Sommer
,
F.
,
Li
,
K.
,
Brosnan
,
T.
,
Herfkens
,
R.
, and
Enzmann
,
D.
,
1994
, “
Quantitative Magnetic Resonance Flow Imaging
,”
Magn. Reson. Quart.
,
10
(3)
, pp.
125
147
.
21.
Elkins
,
C.
,
Markl
,
M.
,
Iyengar
,
A.
,
Wicker
,
R.
, and
Eaton
,
J.
,
2004
, “
Full-Field Velocity and Temperature Measurements Using Magnetic Resonance Imaging in Turbulent Complex Internal Flows
,”
Int. J. Heat Fluid Flow
,
25
, pp.
702
710
.10.1016/j.ijheatfluidflow.2004.05.017
You do not currently have access to this content.