An array of jets is an arrangement typically used to cool several gas turbine parts. Some examples of such applications can be found in the impingement cooling systems of turbine blades and vanes or in the turbine blade tip clearances control of large aero-engines. In order to correctly evaluate the impinging jet mass flow rate, the characterization of holes discharge coefficient is a compulsory activity. In a previous work, the authors have performed an aerodynamic analysis of different arrays of jets for active clearance control; the aim was the definition of a correlation for the discharge coefficient (Cd) of a generic hole of the array. The developed empirical correlation expresses the (Cd) of each hole as a function of the ratio between the hole and the manifold mass velocity and the local value of the pressure ratio. In its original form, the correlation does not take in to account the effect of the hole length to diameter ratio (t/d) so, in the present contribution, the authors report a study with the aim of evaluating the influence of such parameter on the discharge coefficient distribution. The data were taken from a set of CFD RANS simulations, in which the behavior of the cooling system was investigated over a wide range of fluid-dynamics conditions (pressure-ratio = 1.01–1.6, t/d = 0.25–3). To point out the reliability of the CFD analysis, some comparisons with experimental data were drawn. An in depth analysis of the numerical data set has led to an improved correlation with a new term function of the hole length to diameter ratio.

References

1.
Justak
,
J. F.
, and
Doux
,
C.
,
2009
, “
Self-Acting Clearance Control for Turbine Blade Outer Air Seals
,”
Proceedings of the ASME Turbo Expo
, Orlando, FL, June 8–12,
ASME
Paper No. GT2009-59683.10.1115/GT2009-59683
2.
Halila
,
E.
,
Lenahan
,
D.
, and
Thomas
,
T.
,
1982
, “
High Pressure Turbine Test Hardware
,” NASA Report No. CR-167955.
3.
Beck
,
B.
, and
Fasching
,
W.
,
1982
,
“CF6 Jet Engine Performance Improvement - Low Pressure Turbine Active Clearance Control
,” NASA Report No. CR-165557.
4.
Lefebvre
,
A.
,
1998
,
Gas Turbine Combustion
,
Taylor & Francis
,
New York
.
5.
Hay
,
N.
, and
Lampard
,
D.
,
1998
, “
Discharge Coefficient of Turbine Cooling Holes: A Review
,”
ASME J. Turbomach.
,
120
, pp.
314
319
.10.1115/1.2841408
6.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Method of Correlating Discharge Coefficient of Film-Cooling Holes
,”
AIAA J.
,
36
, pp.
976
980
.10.2514/2.467
7.
Gritsch
,
M.
,
Schulz
,
A.
, and
Witting
,
S.
,
1999
, “
Effect of Internal Coolant Crossflow Orientation on the Discharge Coefficient of Shaped Film Cooling Holes
,”
Proceedings of the ASME Turbo Expo
, Indianapolis, IN, June 7–10, ASME Paper No. 99-GT-40.
8.
Rowbury
,
D.
,
Oldfield
,
M.
, and
Lock
,
G.
,
2001
, “
A Method for Correlating the Influence of External Crossflow on the Discharge Coefficients of Film Cooling Holes
,”
ASME J. Turbomach.
,
123
, pp.
258
265
.10.1115/1.1354137
9.
Schulz
,
A.
,
Gritsch
,
M.
, and
Wittig
,
S.
,
2001
, “
Effect of Crossflows on the Discharge Coefficient of Film Cooling Holes With Varying Angles of Inclination
,”
Proceedings of the ASME Turbo Expo
, New Orleans, LA, June 4–7, ASME Paper No. 2001-GT-0134.
10.
Thole
,
K.
,
Smith
,
J.
, and
Miller.
,
A.
,
1997
, “
Effect of a Cross-Flow at the Entrance to a Film-Cooling Hole
,”
ASME J. Fluids Eng.
,
119
, pp.
533
541
.10.1115/1.2819277
11.
Hay
,
N.
,
Lampard
,
D.
, and
Khaldi
,
A.
,
1994
, “
The Coefficient of Discharge of 30 Inclined Film Cooling Holes With Rounded Entries or Exits
,”
Proceedings of the ASME Turbo Expo
, The Hague, Netherlands, June 13–16, ASME Paper No. 94-GT-180.
12.
Goodro
,
M.
,
Park
,
J.
,
Ligrani
,
P. M.
,
Fox
,
M.
, and
Moon
,
H.-K.
,
2007
, “
Effects of Mach Number and Reynolds Number on Jet Array Impingement Heat Transfer
,”
Int. J. Heat Mass Transfer
,
50
(
1
), pp.
367
380
.10.1016/j.ijheatmasstransfer.2006.06.007
13.
Park
,
J.
,
Goodro
,
M.
,
Ligrani
,
P. M.
,
Fox
,
M.
, and
Moon
,
H.-K.
,
2007
, “
Separate Effects of Mach Number and Reynolds Number on Jet Array Impingement Heat Transfer
,”
ASME J. Turbomach.
,
129
(
2
), pp.
269
280
.10.1115/1.2437774
14.
Goodro
,
M.
,
Park
,
J.
,
Ligrani
,
P. M.
,
Fox
,
M.
, and
Moon
,
H.-K.
,
2008
, “
Effect of Hole Spacing on Spatially-Resolved Jet Array Impingement Heat Transfer
,”
Int. J. Heat Mass Transfer
,
51
(
25–26
), pp.
6243
6253
.10.1016/j.ijheatmasstransfer.2008.05.004
15.
Goodro
,
M.
,
Park
,
J.
,
Ligrani
,
P. M.
,
Fox
,
M.
, and
Moon
,
H.-K.
,
2009
, “
Effect of Temperature Ratio on Jet Array Impingement Heat Transfer
,”
ASME J. Heat Transfer
,
131
(
1
), p.
012201
.10.1115/1.2977546
16.
Goodro
,
M.
,
Park
,
J.
,
Ligrani
,
P. M.
,
Fox
,
M.
, and
Moon
,
H.-K.
,
2010
, “
Mach Number, Reynolds Number, Jet Spacing Variations: Full Array of Impinging Jets
,”
AIAA J. Thermophys. Heat Transfer
,
24
(
1
), pp.
133
144
.10.2514/1.44029
17.
Andreini
,
A.
,
Bonini
,
A.
,
Caciolli
,
G.
,
Facchini
,
B.
, and
Taddei
,
S.
,
2010
, “
Numerical Study of Aerodynamic Losses of Effusion Cooling Holes in Aero-Engine Combustor Liners
,”
Proceedings of the ASME Turbo Expo
, Glasgow, UK, June 14–18,
ASME
Paper No. GT2010-22942.10.1115/GT2010-22942
18.
Ahmed
,
F.
,
Weigand
,
B.
, and
Meier
,
K.
,
2010
, “
Heat Transfer and Pressure Drop Characteristics for a Turbine Casing Impingement Cooling System
,”
Proceedings of the ASME International Heat Transfer Conference
, Washington, DC, August 8–13,
ASME
Paper No. IHTC14-22817.10.1115/IHTC14-22817
19.
Ahmed
,
F.
,
Tucholke
,
R.
,
Weigand
,
B.
, and
Meier
,
K.
,
2011
, “
Numerical Investigation of Heat Transfer and Pressure Drop Characteristics for Different Hole Geometries of a Turbine Casing Impingement Cooling System
,”
Proceedings of the ASME Turbo Expo
, Vancouver, Canada, June 6–10,
ASME
Paper No. GT2011-45251.10.1115/GT2011-45251
20.
Andreini
,
A.
, and
DaSoghe
,
R.
,
2011
, “
Numerical Characterization of Aerodynamic Losses of Jet Arrays for Gas Turbine Applications
,”
ASME
Paper No. GT2011-46212.10.1115/GT2011-46212
21.
DaSoghe
,
R.
,
Maiuolo
,
F.
,
Tarchi
,
L.
,
Micio
,
M.
, and
Facchini
,
B.
,
2011
, “
Discharge Coefficient Characterization of Jet Array Impingement Holes for an Active Clearance Control System
,”
Proceedings of the ETC
, Paper No. ETC2011-252.
22.
Andreini
,
A.
,
Da Soghe
,
R.
,
Facchini
,
B.
,
Maiuolo
,
F.
,
Tarchi
,
L.
, and
Coutandin
,
D.
,
2012
, “
Experimental and Numerical Analysis of Multiple Impingement Jet Arrays for an Active Clearance Control System
,” ASME Paper No. GT2012-68791.
23.
CFX
,
A.
,
2011
,
Solver Theory Guide
.
Ansys, Inc.
,
Canonsburg, PA
.
24.
Lichtarowicz
,
A.
,
Duggins
,
R.
, and
Markland
,
E.
,
1965
, “
Discharge Coefficients for Incompressible Non-Cavitating Flow Through Long Orifices
,”
J. Mech. Eng. Sci.
,
7
(
2
),
210219
.10.1243/JMES_JOUR_1965_007_029_02
25.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2000
,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor & Francis
,
New York
.
You do not currently have access to this content.