The current study investigates the flow conditions of a twin scroll asymmetric turbine. This is motivated by the operating conditions of the turbine at a heavy-duty reciprocating internal combustion engine with exhaust gas recirculation. The flow conditions of the turbine at the engine can be described best with the turbine scroll interaction map. Standard hot gas measurements of a turbocharger turbine are presented and discussed. Due to the strong interaction of the turbine scrolls, further hot gas measurements are performed at partial admission conditions. The turbine inlet conditions are analyzed experimentally, in order to characterize the turbine performance. The turbine scroll pressure ratio is varied, leading to unequal twin turbine admission conditions. The flow behavior is analyzed regarding its ability for further extrapolation. Beyond scroll pressure ratio variations, unequal temperature admission conditions were studied. A way of characterizing the representative turbine inlet temperature, regarding the reduced turbine speed, is presented. The different scroll parameter ratios are evaluated regarding their capability of describing flow similarity under different unequal turbine admission conditions. In this content, turbine scroll Mach number ratio, velocity ratio and mass flow ratio are assessed. Furthermore, a generic representation of the turbine flow conditions at the engine is presented, based on standard turbine performance maps.

References

References
1.
Winkler
,
N.
,
Ångström
,
H. E.
, and
Olofsson
,
U.
,
2005
, “
Instantaneous On-Engine Twin-Entry Turbine Efficiency Calculations on a Diesel Engine
,”
SAE
Paper No. 2005-01-3887.10.4271/2005-01-3887
2.
Reuter
,
S.
,
Koch
,
A.
, and
Kaufmann
,
A.
,
2010
, “
Extension of Performance Maps of Radial Turbocharger Turbines Using Pulsating Hot Gas Flow
,”
9th International Conference on Turbochargers and Turbocharging, Inst. of Mech. Eng.
,
London
.
3.
Wünsche
,
A.
, and
Pischinger
,
F.
,
1976
, “
Untersuchung des Durchström- und Wirkungsgradverhaltens teilbeaufschlagter Abgasturbinen und des Einflusses dieser Randbedingungen auf das Betriebsverhalten Abgasturboaufgeladener Verbrennungsmotoren,” Forschungsvereinigung Verbrennungskraftmaschinen e.V. Forschungsbericht Nr. 157.
4.
Dale
,
A.
,
Watson
,
N.
, “
Vaneless Radial Turbine Performance,” IMechE, Paper C110-86, 1986
.
5.
Baines
,
N. C.
, and
Yeo
,
J. H.
,
1991
, “
Flow in a Radial Turbine Under Equal and Partial Admission Conditions
,” IMECHE C423/002.
6.
Costall
,
A.
,
Martinez-Botas
,
R. F.
,
2007
,
Fundamental Characterization of Turbocharger Turbine Unsteady Flow Behavior
,
ASME
Paper No. GT2007-28317.10.1115/GT2007-28317
7.
Romagnoli
,
A.
, and
Martinez-Botas
,
R. F.
, and
Rajoo
,
S.
,
2010
, “
Turbine Performance Studies for Automotive Turbochargers, Part 1: Steady Analysis,” 9th International Conference on Turbochargers and Turbocharging, Inst. of Mech. Eng.
,
London
.
8.
Copeland
,
C.
,
Newton
,
P.
, and
Martinez-Botas
,
R.
,
2010
, “
The Effect of Unequal Admission on the Performance and Loss Generation in a Double-Entry Turbocharger Turbine
,”
ASME
Paper No. GT2010-22212.10.1115/GT2010-22212
9.
Copeland
,
C.
,
Martinez-Botas
,
R.
, and
Seiler
,
M.
,
2009
, “
Comparison Between Steady and Unsteady Double-Entry Turbine Performance Using the Quasi-Steady Assumption
,”
ASME
Paper No. GT2009-59290.10.1115/GT2009-59290
10.
Hajilouy-Benisi
,
A.
,
Rad
,
A.
, and
Shahhosseini
,
M. R.
,
2009
, “
Flow and Performance Characteristics of Twin-Entry Radial Turbine Under Full and Extreme Partial Admission Conditions,” Arch Appl Mech
.
11.
Schittler
,
M.
,
Heil
,
B.
,
Flotho
,
A.
, and
Schmid
,
W.
,
2004
, “
MBE 4000 US′04: Ein R6 Dieselmotor mit Abgasrückführung für Schwere DaimlerChrysler Nutzfahrzeuge in USA,” Wiener Motorensymposium.
12.
Sumser
,
S.
,
Hertweck
,
G.
,
Nolte
,
A.
,
Krätschmer
,
S.
, and
Schmid
,
W.
,
2006
, “
Highlights der Aufladung bei Nutzfahrzeug-Dieselmotoren von Mercedes-Benz
,”
Aufladetechnische Konferenz Dresden
.
13.
Müller
,
M.
,
Streule
,
T.
,
Sumser
,
S.
,
Hertweck
,
G.
,
Knauss
,
A.
,
Küspert
,
A.
,
Nolte
,
A.
, and
Schmid
,
W.
,
2008
, “
The Asymmetric Twin Scroll Turbine for DAIMLER Heavy Duty Engines
,”
Aufladetechnische Konferenz Dresden
.
14.
Müller
,
M.
,
Lettmann
,
H.
,
Stiller
,
M.
,
Künzel
,
S.
,
Sumser
,
S.
,
Krätschmer
,
S.
, and
Schmid
,
W.
,
2009
, “
Weiterentwicklung der Asymmetrischen Turbine für Daimler Nfz-Motoren
,”
Aufladetechnische Konferenz Dresden
.
15.
Schmid
,
W.
, and
Sumser
,
S.
,
2004
, “
International Combustion Engine With an Exhaust Turbocharger and an Exhaust Gas Recirculation Device
,” US Patent No. 6,672,061B2.
16.
Watson
,
N.
, and
Janota
,
M. S.
,
1982
,
Turbocharging the Internal Combustion Engine
,
London
.
17.
Brinkert
,
N.
,
Sumser
,
S.
,
Weber
,
S.
,
Fieweger
,
K.
, and
Bauer
,
H. J.
,
2010
, “
The Assymmetric Twin Scroll Turbine Under Engine Operation Conditions,” Thiesel Conference on Thermo- and Fluid Dynamic Processes in Diesel Engines
.
18.
Klaus
,
M.
,
Schulz
,
A.
, and
Bauer
,
H. J.
,
2005
, “
Blade Vibrations in a Radial Inflow Turbine with Nozzle Guide Vanes
,” ISCORMA-3, Cleveland, OH.
19.
Wiebelt
,
A.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2002
, “
Oil-Free Roller Bearing with Aerostatic Cage for Turbocharger Applications—Part II: An Experimental Study,” 9th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, HI
.
20.
Brinkert
,
N.
,
Kuhn
,
T.
,
Sumser
,
S.
,
Weber
,
S.
,
Fieweger
,
K.
, and
Bauer
,
H. J.
,
2011
, “
Modellierung der zweiflutigen Turbine in der Motorprozesssimulation,” Motorprozesssimulation und Aufladung III, Berlin
.
You do not currently have access to this content.