Airline companies are continuously demanding lower-fuel-consuming engines and this leads to investigating innovative configurations and to further improving single module performance. In this framework the low pressure turbine (LPT) is known to be a key component since it has a major effect on specific fuel consumption (SFC). Modern aerodynamic design of LPTs for civil aircraft engines has reached high levels of quality, but new engine data, after first engine tests, often cannot achieve the expected performance. Further work on the modules is usually required, with additional costs and time spent to reach the quality level needed to enter into service. The reported study is aimed at understanding some of the causes for this deficit and how to solve some of the highlighted problems. In a real engine, the LPT module works under conditions which differ from those described in the analyzed numerical model: the definition of the geometry cannot be so accurate, a priori unknown values for boundary conditions data are often assumed, complex physical phenomena are seldom taken into account, and operating cycle may differ from the design intent due to a nonoptimal coupling with other engine components. Moreover, variations are present among different engines of the same family, manufacturing defects increase the uncertainty and, finally, deterioration of the components occurs during service. Research projects and several studies carried out by the authors lead to the conclusion that being able to design a module whose performance is less sensitive to variations (robust LPT) brings advantages not only when the engine performs under strong off-design conditions but also, due to the abovementioned unknowns, near the design point as well. Concept and preliminary design phases are herein considered, highlighting the results arising from sensibility studies and their impact on the final designed robust configuration. Module performance is afterward estimated using a statistical approach.

References

References
1.
ACARE
,
2001
, “
European Aeronautics: A Vision for 2020-Meeting Society's Needs and Winning Global Leadership
,”
Advisory Council for Aeronautical Research in Europe
, http://www.acare4europe.org
2.
Garrison
,
L.
, and
Walter
,
S.
,
2009
, “
Robustness Assessment of a Prediffuser, Strut and Frame
,” ASME Paper No. GT2009-60163.
3.
Kumar
,
A.
,
Nair
,
P. B.
,
Keane
,
A. J.
, and
Shahpar
,
S.
,
2008
, “
Robust Design Using Bayesian Monte Carlo
,”
Int. J. Numer. Methods Eng.
,
73
(
11
), pp.
1497
1517
.10.1002/nme.2126
4.
Kumar
,
A.
,
Keane
,
A. J.
,
Nair
,
P. B.
, and
Shahpar
,
S.
,
2006
, “
Robust Design of Compressor Fan Blades Against Erosion
,”
ASME J. Mech. Design
,
128
(
4
), pp.
864
873
.10.1115/1.2202886
5.
Ghisu
,
T.
,
Parks
,
G. T.
,
Jarret
,
J. P.
, and
Clarkson
,
P. J.
,
2011
, “
Robust Design Optimization of Gas Turbine Compression Systems
,”
AIAA J. Propul. Power
,
27
(
2
), pp.
282
295
.10.2514/1.48965
6.
Karl
,
A.
,
May
,
G.
,
Barcock
,
C.
,
Webster
,
G.
, and
Bayley
,
N.
,
2006
, “
Robust Design—Methods and Applications to Real World Examples
,” ASME Paper No. GT2006-90649.
7.
Wallace
,
J. M.
,
Wojcik
,
S.
, and
Mavris
,
D. N.
,
2003
, “
Robust Design Analysis of a Gas Turbine Component
,” ASME Paper No. GT2003-38546.
8.
De Poli
,
P.
,
Frola
,
G.
,
Gallizio
,
M.
,
Fattore
,
L.
, and
Mattone
,
M.
,
2006
, “
Multi-disciplinary Integration and Robustness Evaluation Applied to Low Pressure Turbine Casing Design
,” ASME Paper No. GT2006-90464.
9.
Chen
,
W.
, and
Lewis
,
K.
,
1999
, “
A Robust Design Approach for Achieving Flexibility in Multidisciplinary Design
,”
AIAA J.
,
37
(
8
), pp.
982
989
.10.2514/2.805
10.
Egorov
,
I. N.
,
Kretinin
,
G. V.
, and
Leshchenko
,
I. A.
,
2002
, “
How to Execute Robust Design Optimization
,” AIAA Paper No. 2002-4328.
11.
Panchenko
,
Y.
,
Moustapha
,
H.
,
Mah
,
S.
,
Patel
,
K.
,
Dowhan
,
M. J.
, and
Hall
,
D.
,
2002
, “
Preliminary Multi-Disciplinary Optimization in Turbomachinery Design
,” RTO-MP-089.
12.
Denton
,
J.
,
2010
, “
Some Limitations of Turbomachinery CFD
,” ASME Paper No. GT2010-22540.
13.
Craig
,
H. R. M.
, and
Cox
,
H. J. A.
,
1970
, “
Performance Estimation of Axial Flow Turbines
,”
Proc. Inst. Mech. Eng.
,
185
, pp.
407
424
.10.1243/PIME_PROC_1970_185_048_02
14.
Ainley
,
D. G.
, and
Mathieson
,
G. C. R.
,
1957
, “
A Method of Performance Estimation for Axial-Flow Turbines
,” Aeronautical Research Council R&M 2974.
15.
Dunham
,
J.
, and
Came
,
P. M.
,
1970
, “
Improvements to the Ainley-Mathieson Method of Turbine Performance Prediction
,”
J. Eng. Power
,
92
(
3
), pp.
252
256
.10.1115/1.3445349
16.
Kacker
,
S. C.
, and
Okapuu
,
U.
,
1982
, “
A Mean Line Prediction Method for Axial Flow Turbine Efficiency
,”
J. Eng. Power
,
104
, pp.
111
119
.10.1115/1.3227240
17.
Arnone
,
A.
,
1994
, “
Viscous Analysis of Three-Dimensional Rotor Flow Using a Multigrid Method
,”
ASME J Turbomach.
,
116
(
3
), pp.
435
445
.10.1115/1.2929430
18.
Arnone
,
A.
, and
Pacciani
,
R.
,
1996
, “
Rotor-Stator Interaction Analysis Using the Navier–Stokes Equations and a Multigrid Method
,”
ASME J. Turbomach.
,
118
(
4
), pp.
679
689
.10.1115/1.2840923
19.
Jameson
,
A.
,
1991
, “
Time Dependent Calculations Using Multigrid With Applications to Unsteady Flows Past Airfoils and Wings
,” AIAA Paper No. 91-1596.
20.
Baldwin
,
B. S.
, and
Lomax
,
H.
,
1978
, “
Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows
,” AIAA Paper No. 78-257.
21.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1994
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
Rech. Aérospat.
,
1
, pp.
5
21
.
22.
Wilcox
,
D. C.
,
1998
,
Turbulence Modeling for CFD
,
2nd ed.
,
DCW Ind. Inc.
,
La Cañada, CA.
23.
Menter
,
F. R.
,
1994
, “
Two-Equations Eddy Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
24.
Pacciani
,
R.
,
Marconcini
,
M.
,
Fadai-Ghotbi
,
A.
,
Lardeau
,
S.
, and
Leschziner
,
M. A.
,
2011
, “
Calculation of High-Lift Cascades in Low Pressure Turbine Conditions Using a Three-Equation Model
,”
ASME J. Turbomach.
,
133
, p.
031016
.10.1115/1.4001237
25.
Pacciani
,
R.
,
Marconcini
,
M.
,
Arnone
,
A.
, and
Bertini
,
F.
,
2011
, “
An Assessment of the Laminar Kinetic Energy Concept for the Prediction of High-Lift, Low-Reynolds Number Cascade Flows
,”
PIMech. Eng. A J. Power
,
225
(
7
), pp.
995
1003
.10.1177/0957650911412444
26.
Boncinelli
,
P.
,
Rubechini
,
F.
,
Arnone
,
A.
,
Cecconi
,
M.
, and
Cortese
,
C.
,
2004
, “
Real Gas Effects in Turbomachinery Flows: A CFD Model for Fast Computations
,”
ASME J. Turbomach.
,
126
(
2
), pp.
268
276
.10.1115/1.1738121
27.
Zweifel
,
O.
,
1954
, “
Die Frage der Optimalen Schaufelteilung Bei Beschaufelungen von Turbomaschinen, Insbesondere Bei Grosser Umlenkung in den Schaufelreihen
,”
Brown Boveri BBC-Mitt
,
32
(
12
), pp.
436
444
.
You do not currently have access to this content.