This paper describes a new research facility which experimentally models hot gas ingestion into the wheel-space of an axial turbine stage. Measurements of the CO2 gas concentration in the rim-seal region and inside the cavity are used to assess the performance of two generic (though engine-representative) rim-seal geometries in terms of the variation of concentration effectiveness with sealing flow rate. The variation of pressure in the turbine annulus, which governs this externally-induced (EI) ingestion, was obtained from steady pressure measurements downstream of the vanes and near the rim seal upstream of the rotating blades. Although the ingestion through the rim seal is a consequence of an unsteady, three-dimensional flow field and the cause-effect relationship between the pressure and the sealing effectiveness is complex, the experimental data is shown to be successfully calculated by simple effectiveness equations developed from a previously published orifice model. The data illustrate that, for similar turbine-stage velocity triangles, the effectiveness can be correlated using a nondimensional sealing parameter, Φo. In principle, and within the limits of dimensional similitude, these correlations should apply to a geometrically-similar engine at the same operating conditions. Part II of this paper describes an experimental investigation of rotationally-induced (RI) ingress, where there is no mainstream flow and consequently no circumferential variation of external pressure.

References

References
1.
Owen
,
J. M.
,
2011
, “
Prediction of Ingestion Through Turbine Rim Seals—Part I: Rotationally Induced Ingress
,”
ASME J. Turbomach.
,
133
(
3
), p.
031005
.10.1115/1.4001177
2.
Owen
,
J. M.
,
2011
, “
Prediction of Ingestion Through Turbine Rim Seals—Part II: Externally Induced and Combined Ingress
,”
ASME J. Turbomach.
,
133
(
3
), p.
031006
.10.1115/1.4001178
3.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Zhou
,
K.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2011
, “
Experimental Measurements of Ingestion through Turbine Rim Seals—Part II: Rotationally-Induced Ingress
,”
ASME J. Turbomach.
,
135
(
2
), p.
021013
10.1115/1.4006586.
4.
Owen
,
J. M.
,
Pountney
,
O. J.
, and
Lock
,
G. D.
,
2010
, “
Prediction of Ingress Through Turbine Rim Seals—Part II: Combined Ingress
,”
ASME J. Turbomach.
,
134
(3)
, p.
031013
. 10.1115/1.4003071
5.
Owen
,
J. M.
,
Pountney
,
O. J.
,
Zhou
,
K.
,
Wilson
,
M.
, and
Lock
,
G. D.
,
2010
, “
Prediction of Ingress Through Turbine Rim Seals—Part I: Externally-Induced Ingress
,”
ASME J. Turbomach
.,
134
(3)
, p.
031012
. 10.1115/1.4003070
6.
Abe
,
T.
,
Kikuchi
,
J.
, and
Takeuchi
,
H.
,
1979
, “
An Investigation of Turbine Disk Cooling (Experimental Investigation and Observation of Hot Gas Flow into a Wheel Space)
,”
ASME Paper No. GT30
.
7.
Phadke
,
U. P.
, and
Owen
,
J. M.
,
1988
, “
Aerodynamic Aspects of the Sealing of Gas-Turbine Rotor-Stator Systems—Part 1: The Behavior of Simple Shrouded Rotating-Disk Systems in a Quiescent Environment
,”
Int. J. Heat Fluid Flow
,
9
(
2
), pp.
98
105
.10.1016/0142-727X(88)90060-4
8.
Phadke
,
U. P.
and
Owen
,
J. M.
,
1988
, “
Aerodynamic Aspects of the Sealing of Gas-Turbine Rotor-Stator Systems—Part 2: The Performance of Simple Seals in a Quasi-Axisymmetric External Flow
,”
Int. J. Heat Fluid Flow
,
9
(
2
), pp.
106
112
.10.1016/0142-727X(88)90061-6
9.
Phadke
,
U. P.
and
Owen
,
J. M.
,
1988
, “
Aerodynamic Aspects of the Sealing of Gas-Turbine Rotor-Stator Systems—Part 3: The Effect of Nonaxisymmetric External Flow on Seal Performance
,”
Int. J. Heat Fluid Flow
,
9
(
2
), pp.
113
117
.10.1016/0142-727X(88)90062-8
10.
Hamabe
,
K.
and
Ishida
,
K.
,
1992
, “
Rim Seal Experiments and Analysis of a Rotor-Stator System With Nonaxisymmetric Main Flow
,”
ASME Paper No. 92-GT-160
.
11.
Dadkhah
,
S.
,
Turner
,
A. B.
, and
Chew
,
J. W.
,
1992
, “
Performance of Radial Clearance Rim Seals in Upstream and Downstream Rotor-Stator Wheelspaces
,”
ASME J. Turbomach.
,
114
(
2
), pp.
439
445
.10.1115/1.2929163
12.
Green
,
T.
and
Turner
,
A. B.
,
1994
, “
Ingestion Into the Upstream Wheelspace of an Axial Turbine Stage
,”
ASME J. Turbomach.
,
116
(
2
), pp.
327
332
.10.1115/1.2928368
13.
Bohn
,
D. E.
,
Decker
,
A.
,
Ohlendorf
,
N.
, and
Jakoby
,
R.
,
2006
, “
Influence of an Axial and Radial Rim Seal Geometry on Hot Gas Ingestion Into the Upstream Cavity of a 1.5-Stage Turbine
,”
ASME
Paper No. GT2006-9045310.1115/GT2006-90453.
14.
Gentilhomme
,
O.
,
Hills
,
N. J.
,
Turner
,
A. B.
, and
Chew
,
J. W.
,
2003
, “
Measurement and Analysis of Ingestion Through a Turbine Rim Seal
,”
ASME J. Turbomach.
,
125
(
3
), pp.
505
512
.10.1115/1.1556411
15.
Bohn
,
D.
, and
Wolff
,
M.
,
2003
, “
Improved Formulation to Determine Minimum Sealing Flow—Cw,min—for Different Sealing Configurations
,”
ASME
Paper No. GT2003-3846510.1115/GT2003-38465.
16.
Johnson
,
B. V.
,
Jakoby
,
R.
,
Bohn
,
D. E.
, and
Cunat
,
D.
,
2009
, “
A Method for Estimating the Influence of Time-Dependent Vane and Blade Pressure Fields on Turbine Rim Seal Ingestion
,”
ASME J. Turbomach.
,
131
(
2
), p.
021005
.10.1115/1.2950053
17.
Bohn
,
D. E.
,
Decker
,
A.
,
Ma
,
H.
, and
Wolff
,
M.
,
2003
, “
Influence of Sealing Air Mass Flow on the Velocity Distribution In and Inside the Rim of the Upstream Cavity of a 1.5-Stage Turbine
,”
ASME
Paper No. GT2003-3845910.1115/GT2003-38459.
18.
Johnson
,
B. V.
,
Wang
,
C. Z.
, and
Roy
,
R. P.
,
2008
, “
A Rim Seal Orifice Model With 2 Cds and Effects of Swirl in Seals
,”
ASME
Paper No. GT2008-50650.10.1115/GT2008-50650
19.
Zhou
,
K.
,
Wilson
,
M.
,
Lock
,
G. D.
, and
Owen
,
J. M.
,
2011
, “
Computation of Ingestion Through Gas Turbine Rim Seals
,”
ASME
Paper No. GT2011-45314.10.1115/GT2011-45314
20.
Zhou
,
K.
,
Wood
,
S. N.
, and
Owen
,
J. M.
,
2011
, “
Statistical and Theoretical Models of Ingestion Through Turbine Rim Seals
,”
ASME
Paper No. GT2011-4513910.1115/GT2011-45139.
21.
Owen
,
J. M.
, and
Rogers
,
R. H.
,
1989
,
Flow and Heat Transfer in Rotating-Disc Systems, Volume 1—Rotor Stator Systems
,
Research Studies Press Ltd
,
Taunton, UK
.
You do not currently have access to this content.