This paper presents a study using 3D computational fluid dynamics (CFD) based on Reynolds-averaged Navier-Stokes (RANS) equations to predict turbine gas-side heat transfer coefficients (HTC) on the entire airfoil and endwall. The CFD results at different spanwise sections and endwall have been compared with the flat-plate turbulent boundary layer correlation and with the data in a NASA turbine rotor passage with strong secondary flows, under three different flow conditions. The enhancement effects of secondary flow vortices on the blade surface and endwall heat transfer rate have been examined in detail. Analyses were conducted for the impact of Reynolds number and exit Mach number on heat transfer. The SST, k-ɛ, V2F, and realizable k-ɛ turbulence models have been assessed. The classical log-law wall-functions have been found to be comparable to the wall-integration methods but with much reduced sensitivity to inlet turbulence conditions. The migration of hot gas was simulated with a radial profile of inlet temperature. CFD results for mid-span HTCs of two other airfoils were also compared with test data. Overall, results are encouraging and indicate improved HTC and temperature predictions from 3D CFD could help optimize the design of turbine cooling schemes.

References

References
1.
Simon
,
T. W.
, and
Piggush
,
J. D.
,
2006
, “
Turbine Endwall Aerodynamics and Heat Transfer
,”
J. Propul. Power
,
22
(
2
), pp.
301
312
.10.2514/1.16344
2.
Goldstein
,
R. J.
, and
Spores
,
R. A.
,
1988
, “
Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades
,”
ASME J. Heat Transfer
,
110
, pp.
862
869
.10.1115/1.3250586
3.
Giel
,
P. W.
,
Thurman
,
D. R.
,
Van Fossen
,
G. J.
,
Hippensteele
,
S. A.
, and
Boyle
,
R. J.
,
1998
, “
Endwall Heat Transfer Measurements in a Transonic Turbine Cascade
,”
ASME J. Turbomach.
,
120
, pp.
305
313
.10.1115/1.2841407
4.
Giel
,
P. W.
,
Van Fossen
,
G. J.
,
Boyle
,
R. J.
,
Thurman
,
D. R.
, and
Civinskas
,
K. C.
,
1999
, “
Blade Heat Transfer Measurements and Predictions in a Transonic Turbine Cascade
,” ASME Paper No. 99-GT-125.
5.
Radomsky
,
R. A.
, and
Thole
,
K. A.
,
2000
, “
High Freestream Turbulence Effects on Endwall Heat Transfer for a Gas Turbine Stator Vane
,” ASME Paper No. 2000-GT-0201.
6.
Dunn
,
M. G.
,
2001
, “
Convective Heat Transfer and Aerodynamics in Axial Flow Turbines
,”
ASME J. Turbomach.
,
123
, pp.
637
686
.10.1115/1.1397776
7.
Medic
,
G.
, and
Durbin
,
P. A.
,
2002
, “
Toward Improved Prediction of Heat Transfer on Turbine Blades
,”
ASME J. Turbomach.
,
124
, pp.
187
192
.10.1115/1.1458020
8.
Hermanson
,
K.
,
Kern
,
S.
,
Picker
,
G.
, and
Parneix
,
S.
,
2002
, “
Predictions of External Heat Transfer for Turbine Vanes and Blades With Secondary Flowfields
,” ASME Paper No. GT2002-30206.
9.
Ameri
,
A. A.
, and
Ajmani
,
K.
,
2004
, “
Evaluation of Predicted Heat Transfer on a Transonic Blade Using v2-f Models
,” ASME Paper No. GT2004-53572.
10.
Tolpadi
,
A. K.
,
Tallman
,
J. A.
, and
El-Gabry
,
L.
,
2005
, “
Turbine Airfoil Heat Transfer Predictions Using CFD
,” ASME Paper No. GT2005-68051.
11.
Pecnik
,
R.
,
Pieringer
,
P.
, and
Sanz
,
W.
,
2005
, “
Numerical Investigation of the Secondary Flow of a Transonic Turbine Stage Using Various Turbulence Closures
,” ASME Paper No. GT2005-68754.
12.
Mansour
,
M. L.
,
Hosseini
,
K. M.
,
Liu
,
J. S.
, and
Goswami
,
S.
,
2006
, “
Assessment of the Impact of Laminar-Turbulent Transition on the Accuracy of Heat Transfer Coefficient Prediction in High Pressure Turbines
,” ASME Paper No. GT2006-90273.
13.
Tallman
,
J. A.
,
Haldeman
,
C. W.
,
Dunn
,
M. G.
,
Tolpadi
,
A. K.
, and
Bergholz
,
R. F.
,
2009
, “
Heat Transfer Measurements and Predictions for a Modern, High-Pressure, Transonic Turbine, Including Endwalls
,”
ASME J. Turbomach.
,
131
,
021001
.10.1115/1.2985072
14.
Kays
,
W. M.
,
Crawford
,
M. E.
, and
Weigand
,
B.
,
2004
,
Convective Heat and Mass Transfer
,
McGraw-Hill
,
New York
.
15.
Praisner
,
T. J.
, and
Clark
,
J. P.
,
2007
, “
Predicting Transition in Turbomachinery - Part I: A Review and New Model Development
,”
ASME J. Turbomach.
,
129
, pp.
1
13
.10.1115/1.2366513
16.
Luo
,
J.
, and
Razinsky
,
E.
,
2008
, “
Prediction of Heat Transfer and Flow Transition on Transonic Turbine Airfoils Under High Freestream Turbulence
,” ASME Paper No. GT2008-50868.
17.
Kusterer
,
K.
,
Hagedorn
,
T.
,
Bohn
,
D.
,
Sugimoto
,
T.
, and
Tanaka
,
R.
,
2005
, “
Improvement of a Film-Cooled Blade by Application of the Conjugate Calculation Technique
,” ASME Paper No. GT2005-68555.
18.
Luo
,
J.
, and
Razinsky
,
E.
,
2007
, “
Conjugate Heat Transfer Analysis of a Cooled Turbine Vane Using the V2F Turbulence Model
,”
ASME J. Turbomach.
,
129
, pp.
773
781
.10.1115/1.2720483
19.
He
,
L.
, and
Oldfield
,
M. L. G.
,
2009
, “
Unsteady Conjugate Heat Transfer Modelling
,” ASME Paper No. GT2009-59174.
20.
STAR-CD Version 4.10: Methodology
,”
2009
,
CD-adapco Group
,
New York/London
.
21.
Durbin
,
P. A.
,
2009
, “
Limiters and Wall Treatments in Applied Turbulence Modeling
,”
Fluid Dyn. Res.
,
41
,
012203
.10.1088/0169-5983/41/1/012203
22.
Levchenya
,
A. M.
, and
Smirnov
,
E. M.
,
2007
, “
CFD-Analysis of 3D Flow Structure and Endwall Heat Transfer in a Transonic Turbine Blade Cascade: Effects Of Grid Refinement
,”
West-East High Speed Flow Field Conference
,
Moscow, Russia
,
Nov
.
23.
Ames
,
F. E.
,
Wang
,
C.
, and
Barbot
,
P. A.
,
2002
, “
Measurement and Prediction of the Influence of Catalytic and Dry Low Nox Combustor Turbulence on Vane Surface Heat Transfer
,” ASME Paper No. GT2002-30524.
24.
Hylton
,
L. D.
,
Milhec
,
M. S.
,
Turner
,
E. R.
,
Nealy
,
D. A.
, and
York
,
R. E.
,
1983
, “
Analytical and Experimental Evaluation of the Heat Transfer Distribution Over the Surface of Turbine Vanes
,” NASA CR Report No. 168015.
25.
Hinze
,
J. O.
,
1975
,
Turbulence
,
McGraw-Hill
,
New York
.
26.
Ames
,
F. E.
,
1994
, “
Experimental Study of Vane Heat Transfer and Aerodynamics at Elevated Levels of Turbulence
,” NASA CR Report No. 4633.
27.
Horlock
,
J. H.
, and
Denton
,
J. D.
,
2005
, “
A Review Of Some Early Design Practice Using Computational Fluid Dynamics and a Current Perspective
,”
ASME J. Turbomach.
,
127
, pp.
5
13
.10.1115/1.1650379
You do not currently have access to this content.