Gas turbine engines operating in a hostile environment, polluted with sand or dust particles, are susceptible to erosion damage, mostly at the front axial fans and compressors. Accurately predicting the erosion pattern and rate due to sand ingestion is one of the major challenges faced by the transportation and power industries. Maintenance costs are scrutinized and intensive research efforts are currently deployed in predictive life assessment tools to minimize the overhaul down time. The conventional prediction methods were usually based on steady-state simulations of gas-phase flows through a single blade passage per blade row to reduce the computational cost. However, the multistage turbomachinery flows are intrinsically subject to unsteadiness, especially due to stator-rotor interactions, which may affect sand particle trajectories even if a one-way coupling method is considered. Furthermore, an unsteady stator-rotor interaction requires a whole-annulus model at great computational cost to avoid simplifications of the geometries or flow physics. To study the effects of the stator-rotor interaction on sand particle trajectories and erosion, an axial fan with inlet guide vanes is investigated, based on the whole annulus computations of both steady and unsteady gas-phase flows, each of which is then followed by a Lagrangian particle tracking step. A numerical algorithm for tracking particles driven by the unsteady gas-phase flow is presented. The comparison of the numerical predictions with the experimental data confirms the validity and necessity of the unsteady computational fluid dynamics (CFD) model in providing adequate predictions of sand erosion in the axial fan.

References

References
1.
Ghenaiet
,
A.
,
Tan
,
S. C.
, and
Elder
,
R. L.
,
2004
, “
Experimental Investigation of Axial Fan Erosion and Performance Degradation
,”
Proc. Inst. Mech. Eng., Part A
,
218
,
pp.
437
450
.10.1243/0957650041761900
2.
Ghenaiet
,
A.
,
2001
, “
Turbomachinery Performance Degradation Due to Erosion Effect
,”
Ph.D. thesis
,
Cranfield University
,
Cranfield, UK
.
3.
Grant
,
G.
, and
Tabakoff
,
W.
,
1975
, “
Erosion Prediction in Turbomachinery Resulting From Environmental Solid Particles
,”
J. Aircr.
,
12
,
pp.
471
478
.10.2514/3.59826
4.
Tabakoff
,
W.
and
Hamed
,
A.
,
1996
, “
Effect of Target Materials on the Particle Restitution Characteristics for Turbomachinery Application
,”
J. Propul. Power
,
12
,
pp.
260
266
.10.2514/3.24022
5.
Tabakoff
,
W.
,
1984
, “
Review—Turbomachinery Performance Deterioration Exposed to Solid Particulates Environment
,”
ASME J. Fluids Eng.
,
106
,
pp.
125
134
.10.1115/1.3243088
6.
Hamed
,
A.
,
Tabakoff
,
W.
,
Rivir
,
R. B.
,
Das
,
K.
, and
Arora
,
P.
,
2005
, “
Turbine Blade Surface Deterioration by Erosion
,”
ASME J. Turbomach.
,.
127
,
pp.
445
452
.10.1115/1.1860376
7.
Dai
,
L.
,
Yu
,
M.
, and
Dai
,
Y.
,
2007
, “
Nozzle Passage Aerodynamics Design to Reduce Solid Particle Erosion of a Supercritical Steam Turbine Control Stage
,”
Wear
,
262
,
pp.
104
111
.10.1016/j.wear.2006.04.010
8.
Ghenaiet
,
A.
,
Tan
,
S. C.
, and
Elder
,
R. L.
,
2005
, “
Prediction of an Axial Turbomachine Performance Degradation Due to Sand Ingestion
,”
Proc. Inst. Mech. Eng., Part A
,
219
,
pp.
273
287
.10.1243/095765005X7592
9.
Suzuki
,
M.
and
Yamamoto
,
M.
,
2010
, “
Numerical Simulation of Sand Erosion in a Transonic Compressor Rotor
,” ASME Turbo Expo 2010,
Glasgow, UK
, June 14–18,
ASME
Paper No. GT2010-23593
.10.1115/GT2010-23593
10.
Suzuki
,
M.
,
Inaba
,
K.
, and
Yamamoto
,
M.
,
2008
, “
Numerical Simulation of Sand Erosion Phenomena in Rotor/Stator Interaction of Compressor
,”
J. Therm. Science
,
17
,
pp.
125
133
.10.1007/s11630-008-0125-7
11.
Yang
,
H.
,
Nuernberger
,
D.
, and
Weber
,
A.
,
2002
, “
A Conservative Zonal Approach With Application to Unsteady Turbomachinery Flows
,”
DGLR Jahrestagung
,
Stuttgart
,
Germany, September
23–26
.
12.
Van der Weide
,
E.
,
Gopinath
,
A.
, and
Jameson
,
A.
,
2005
, “
Turbomachinery Applications With the Time Spectral Method
,”
AIAA Paper No. 2005-4905
.
13.
Hall
,
K. C.
,
Clark
,
W. S.
, and
Lorence
,
C. B.
,
1994
, “
A Linearized Euler Analysis of Unsteady Transonic Flows in Turbomachinery
,”
ASME J. Turbomach.
,
116
,
pp.
477
488
.10.1115/1.2929437
14.
Ekici
,
K.
and
Hall
,
K. C.
,
2006
, “
Nonlinear Analysis of Unsteady Flows in Multistage Turbomachines Using the Harmonic Balance Technique
,”
AIAA Paper No. 2006-0422
.
15.
Roeber
,
T.
,
Kuegeler
,
E.
, and
Weber
,
A.
,
2010
, “
Investigation of Unsteady Flow Effects in an Axial Compressor Based on Whole Annulus Computations
,” ASME Turbo Expo 2010,
Glasgow, UK
, June 14–18,
ASME
Paper No. GT2010-23522
.10.1115/GT2010-23522
16.
Eyler
,
R.
,
1987
, “
Design and Analysis of a Pneumatic Flow Loop
,”
M.S. thesis
,
West Virginia University
,
Morgantown, WV
.
17.
Yang
,
H.
and
Jiang
,
L.Y.
, “
Development of High-Fidelity CFD Solvers Toward Building Virtual Engine Capabilities for Gas Turbines
,”
17th Annual Conference of CFD Society of Canada
,
Kanata, Ontario
,
May
3–5
.
18.
Yang
,
H.
and
Jiang
,
L.Y.
,
2010
, “
A Dual Mesh Approach to Enhance Accuracy of the Boundary Conditions for Unstructured Grid Modeling of Turbomachinery Flows
,” ASME Turbo Expo 2010,
Glasgow, UK
, June 14–18,
ASME
Paper No. GT2010-23390
.10.1115/GT2010-23390
19.
Yang
,
H.
,
2010
, “
Assessment of Parallel Performance of a 3D Unstructured CFD Solver on Linux Cluster With Multi-Core Processors
,”
18th Annual Conference of the CFD Society of Canada
,
London, Ontario
,
May
17–19
.
20.
Karypis
,
G.
,
Schloegel
,
K.
, and
Kumar
,
V.
,
2003
, “
ParMetis–Parallel Graph Partitioning and Sparse Matrix Ordering Library, Version 3.1
,”
University of Minnesota, Minneapolis, MN
.
21.
Wilcox
,
D. C.
,
1998
,
Turbulence Modelling for CFD
,
2nd ed.
,
DCW Industries
,
Anaheim, CA
.
22.
Durbin
,
P. A.
,
1996
, “
On the k-3 Stagnation Point Anomaly
,”
Int. J. Heat Fluid Flow
,
17
,
pp.
89
90
.10.1016/0142-727X(95)00073-Y
23.
Giles
,
M. B.
,
1990
, “
Nonreflecting Boundary Conditions for Euler Conditions
,”
AIAA J.
,
28
,
pp.
2050
2058
.10.2514/3.10521
24.
Saxer
,
A. P.
and
Giles
,
M. B.
,
1993
, “
Quasi-Three-Dimensional Nonreflecting Boundary Conditions for Euler Equations Calculations
,”
J. Propul. Power
,
9
,
pp.
263
271
.10.2514/3.23618
25.
Yang
,
H.
,
Nuernberger
,
D.
,
Nicke
,
E.
, and
Weber
,
A.
,
2003
, “
Numerical Investigation of Casing Treatment Mechanisms With a Conservative Mixed-Cell Approach
,” ASME Turbo Expo 2003,
Atlanta, Georgia
, June 16–19,
ASME
Paper No. GT2003-38483
.10.1115/GT2003-38483
26.
Forder
,
A.
,
Thew
,
M.
, and
Harrison
,
D.
,
1988
, “
Numerical Investigation of Solid Particle Erosion Experienced Within Oilfield Control Valves
,”
Wear
,
216
,
pp.
184
193
.10.1016/S0043-1648(97)00217-2
27.
Edwards
,
K. J.
,
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
2001
, “
Modeling Solid Particle Erosion in Elbows and Plugged Tees
,”
ASME J. Energy Resour. Technol.
,
123
,
pp.
277
284
.10.1115/1.1413773
28.
Ahlert
,
K.
,
1994
, “
Effects of Particle Impingement Angle and Surface Wetting on Solid Particle Erosion of AISI 1018 Steel
,”
M.S. thesis
,
Department of Mechanical Engineering, The University of Tulsa
,
Tulsa, OK
.
29.
Edwards
,
R. V.
and
Rouse
,
P. L.
,
1994
, “
US Army Rotorcraft Turboshaft Engines Sand and Dust Erosion Considerations
,”
AGARD, Erosion, Corrosion and Foreign Object Damage Effects in Gas Turbines
,
Quebec, Canada
.
You do not currently have access to this content.