In compression systems, the stable operating range is limited by rotating stall and/or surge. Two distinct types of stall precursors can be observed prior to full scale instability: the development of long-wavelength modal waves or a short-wavelength, three-dimensional flow breakdown (so-called “spike” stall inception). The cause of the latter is not well understood; in axial machines it has been suggested that rotor blade-tip leakage flow plays an important role, but spikes have recently been observed in shrouded vaned diffusers of centrifugal compressors where these leakage flows are not present, suggesting an alternative mechanism may be at play. This paper investigates the onset of instability in a shrouded vaned diffuser from a highly loaded turbocharger centrifugal compressor and discusses the mechanisms thought to be responsible for the development of short-wavelength stall precursors. The approach combines unsteady 3D RANS simulations of an isolated vaned diffuser with previously obtained experimental results. The unsteady flow field simulation begins at the impeller exit radius, where flow is specified by a spanwise profile of flow angle and stagnation properties, derived from single-passage stage calculations but with flow pitchwise mixed. Through comparison with performance data from previous experiments and unsteady full-wheel simulations, it is shown that the diffuser is accurately matched to the impeller and the relevant flow features are well captured. Numerical forced response experiments are carried out to determine the diffuser dynamic behavior and point of instability onset. The unsteady simulations demonstrate the growth of short-wavelength precursors; the flow coefficient at which these occur, the rotation rate and circumferential extent agree with experimental measurements. Although the computational setup and domain limitations do not allow simulation of the fully developed spike nor full-scale instability, the model is sufficient to capture the onset of instability and allows the postulation of the following necessary conditions: (i) flow separation at the diffuser vane leading edge near the shroud endwall; (ii) radially reversed flow allowing vorticity shed from the leading edge to convect back into the vaneless space; and (iii) recirculation and accumulation of low stagnation pressure fluid in the vaneless space, increasing diffuser inlet blockage and leading to instability. Similarity exists with axial machines, where blade-tip leakage sets up endwall flow in the circumferential direction leading to flow breakdown and the inception of rotating stall. Rather than the tip leakage flows, the cause for circumferential endwall flow in the vaned diffuser is the combination of high swirl and the highly nonuniform spanwise flow profile at the impeller exit.

References

1.
Cumpsty
,
N.
,
2004
,
Compressor Aerodynamics
,
Kreiger Publishing Company
,
Malabar, FL
.
2.
Japikse
,
D.
,
1996
,
Centrifugal Compressor Design and Performance
,
Concepts ETI, Inc
,
Wilder, VT
.
3.
Greitzer
,
E.
,
1981
, “
The Stability of Pumping Systems—The 1980 Freeman Scholar Lecture
,”
J. Fluids Eng.
,
99
, pp.
193
242
.10.1115/1.3241725
4.
Hunziker
,
R.
, and
Gyarmathy
,
G.
,
1994
, “
The Operational Stability of a Centrifugal Compressor and its Dependence on the Characteristics of the Subcomponents
,”
ASME J. Turbomach.
,
116
, pp.
250
259
.10.1115/1.2928359
5.
Frigne
,
P.
, and
Van Den Braembussche
,
R.
,
1984
, “
Distinction Between Different Types of Impeller and Diffuser Rotating Stall in a Centrifugal Compressor With Vaneless Diffuser
,”
ASME J. Eng. Gas Turbines Power
,
106
, pp.
468
474
.10.1115/1.3239589
6.
Camp
,
T.
, and
Day
,
I.
,
1998
, “
A Study of Spike and Modal Stall Behavior in a Low-Speed Axial Compressor
,”
ASME J. Turbomach.
,
120
, pp.
393
401
.10.1115/1.2841730
7.
Lawless
,
P. B.
, and
Fleeter
,
S.
,
1993
, “
Rotating Stall Acoustic Signature in a Low-Speed Centrifugal Compressor: Part 2—Vaned Diffuser
,”
ASME Paper No. 93-GT-254
.
8.
Lawless
,
P. B.
, and
Fleeter
,
S.
,
1995
, “
Rotating Stall Acoustic Signature in a Low-Speed Centrifugal Compressor: Part 1—Vaneless Diffuser
,”
ASME J. Turbomach.
,
117
, pp.
87
96
.10.1115/1.2835646
9.
Oakes
,
W. C.
,
Lawless
,
P. B.
, and
Fleeter
,
S.
,
1999
, “
Instability Pathology of a High Speed Centrifugal Compressor
,”
ASME Paper No. 99-GT-415
.
10.
Spakovszky
,
Z. S.
, and
Roduner
,
C. H.
,
2009
, “
Spike and Modal Stall Inception in an Advanced Turbocharger Centrifugal Compressor
,”
ASME J. Turbomach.
,
131
, p.
031012
.10.1115/1.2988166
11.
Skoch
,
G. J.
,
2003
, “
Experimental Investigation of Centrifugal Compressor Stabilization Techniques
,”
ASME
Paper No. GT2003-38524. 10.1115/GT2003-38524
12.
Nelson
,
E. B.
,
Paduano
,
J. D.
, and
Epstein
,
A. H.
,
2000
, “
Active Stabilization of Surge in an Axicentrifugal Turboshaft Engine
,”
ASME J. Turbomach.
,
122
, pp.
485
493
.10.1115/1.1304915
13.
Spakovszky
,
Z. S.
,
2001
, “
Applications of Axial and Radial Compressor Dynamic Modeling
,”
Ph.D. thesis
,
MIT
,
Cambridge, MA
.
14.
Spakovszky
,
Z. S.
,
2004
, “
Backward Traveling Rotating Stall Waves in Centrifugal Compressors
,”
ASME J. Turbomach.
,
126
, pp.
1
12
.10.1115/1.1643382
15.
Moore
,
F.
, and
Greitzer
,
E. M.
,
1986
, “
A Theory of Post-Stall Transients in Axial Compression Systems: Part I—Development of the Equations
,”
ASME J. Eng. Gas Turbines Power
,
108
, pp.
68
76
.10.1115/1.3239887
16.
Longley
,
J.
,
1994
, “
A Review of Nonsteady Flow Models for Compressor Stability
,”
ASME J. Turbomach.
,
116
, pp.
202
215
.10.1115/1.2928354
17.
Tan
,
C. S.
,
Day
,
I.
,
Morris
,
S.
, and
Wadia
,
A.
,
2010
, “
Spike-Type Compressor Stall Inception, Detection and Control
,”
Ann. Rev. Fluid Mech.
,
42
, pp.
275
300
.10.1146/annurev-fluid-121108-145603
18.
Benneke
,
B.
,
2009
, “
A Methodology for Centrifugal Compressor Stability Prediction
,”
M.S. thesis
,
MIT
,
Cambridge, MA
.
19.
Ibaraki
,
S.
,
Matsuo
,
T.
, and
Yokoyama
,
T.
,
2007
, “
Investigation of Unsteady Flow Field in a Vaned Diffuser of a Transonic Centrifugal Compressor
,”
ASME J. Turbomach.
,
129
, pp.
686
693
.10.1115/1.2720505
20.
Cukurel
,
B.
,
Lawless
,
P. B.
, and
Fleeter
,
S.
,
2010
, “
Particle Image Velocity Investigation of a High Speed Centrifugal Compressor Diffuser: Spanwise and Loading Variations
,”
ASME J. Turbomach.
,
132
, p.
021010
.10.1115/1.3104616
21.
Dawes
,
W.
,
1995
, “
A Simulation of the Unsteady Interaction of a Centrifugal Impeller With its Vaned Diffuser: Flow Analysis
,”
ASME J. Turbomach.
,
117
, pp.
213
222
.10.1115/1.2835649
22.
Shum
,
Y.
,
Tan
,
C.
, and
Cumpsty
,
N.
,
2000
, “
Impeller-Diffuser Interaction in a Centrifugal Compressor
,”
ASME J. Turbomach.
,
122
, pp.
777
786
.10.1115/1.1308570
23.
Baghdadi
,
S.
,
1977
, “
The Effect of Rotor Blade Wakes on Centrifugal Compressor Diffuser Performance—A Comparitive Experiment
,”
J. Fluids Eng.
,
99
, pp.
45
52
.10.1115/1.3448548
24.
Everitt
,
J. N.
,
2010
, “
Investigation of Stall Inception in Centrifugal Compressors Using Isolated Diffuser Simulations
,”
M.S. thesis
,
MIT
,
Cambridge, MA
.
25.
Gould
,
K. A.
,
Tan
,
C. S.
, and
Macrorie
,
M.
,
2007
, “
Characterization of Unsteady Impeller-Blade Loading in a Centrifugal Compressor with a Discrete-Passage Diffuser
,”
ASME
Paper No. GT2007-28002.10.1115/GT2007-28002
26.
Filipenco
,
V. G.
,
Deniz
,
S.
,
Johnston
,
J. M.
,
Greitzer
,
E. M.
, and
Cumpsty
,
N. A.
,
2000
, “
Effects of Inlet Flow Field Conditions on the Performance of Centrifugal Compressor Diffusers: Part 1—Discrete-Passage Diffuser
,”
ASME J. Turbomach.
,
122
, pp.
1
10
.10.1115/1.555418
27.
Giles
,
M.
,
1989
, “
Non-Reflecting Boundary Conditions for Euler Equation Calculations
,”
AIAA J.
,
28
, pp.
2050
2058
.10.2514/3.10521
28.
Denton
,
J.
,
2010
, “
Some Limitations of Turbomachinery CFD
,”
ASME
Paper No. GT2010-22540.10.1115/GT2010-22540
29.
Liu
,
Y.
,
Liu
,
B.
, and
Lu
,
L.
,
2010
, “
Investigation of Unsteady Impeller-Diffuser Interaction in a Transonic Centrifugal Compressor Stage
,”
ASME
Paper No. GT2010-22737.10.1115/GT2010-22737
30.
Peeters
,
M.
, and
Sleiman
,
M.
,
2000
, “
A Numerical Investigation of the Unsteady Flow in Centrifugal Stages
,”
ASME Paper No. 2000-GT-426
.
31.
Vo
,
H. D.
,
Tan
,
C. S.
, and
Greitzer
,
E. M.
,
2008
, “
Criteria for Spike Initiated Rotating Stall
,”
ASME J. Turbomach.
,
130
, p.
011023
.10.1115/1.2750674
32.
Deppe
,
A.
,
Saathof
,
H.
, and
Stark
,
U.
,
2008
, “
Discussion: ‘Criteria for Spike Initiated Rotating Stall’
,”
ASME J. Turbomach.
,
130
, p.
015501
.10.1115/1.2750673
33.
Inoue
,
M.
,
Kuroumaru
,
M.
,
Tanino
,
T.
, and
Furukawa
,
M.
,
2000
, “
Propagation of Multiple Short-Length-Scale Stall Cells in an Axial Compressor Rotor
,”
ASME J. Turbomach.
,
122
, pp.
45
54
.10.1115/1.555426
34.
Inoue
,
M.
,
Kuroumaru
,
M.
,
Tanino
,
T.
,
Yoshida
,
S.
, and
Furukawa
,
M.
,
2001
, “
Comparative Studies on Short and Long Length-Scale Stall Cell Propagating in an Axial Compressor Rotor
,”
ASME J. Turbomach.
,
123
, pp.
24
32
.10.1115/1.1326085
35.
Inoue
,
M.
,
Kuroumaru
,
M.
,
Yoshida
,
S.
, and
Furukawa
,
M.
,
2002
, “
Short and Long Length-Scale Disturbances Leading to Rotating Stall in an Axial Compressor Stage With Different Stator/Rotor Gaps
,”
ASME J. Turbomach.
,
124
, pp.
376
384
.10.1115/1.1458022
You do not currently have access to this content.