This work investigates the effect of tip clearance size and operating temperature on the predictions of the critical rotor speed at which nonsynchronous vibrations (NSV) can be encountered in a turbine engine axial flow compressor. It has been proposed that the tangential tip clearance flow, observed at high blade loading near stall, can act as an impinging resonant jet on the upcoming blades and could be the underlying physics behind NSV. A model, in the form of an equation to predict the critical blade tip speed at which NSV can occur, was proposed based on the Jet-Core Feedback Theory and was experimentally verified by Thomassin et al. (2008, “Experimental Demonstration to the Tip Clearance Flow Resonance Behind Compressor NSV,” Proceedings of GT2008: ASME Turbo Expo Power for Land, Sea and Air, Berlin, Germany, Jun. 9–13, Paper No. GT2008-50303). In the equation, a factor k that was called the “tip instability convection coefficient” was measured experimentally and found to be influenced by the tip clearance size and operating temperature. This factor has a significant impact on the accuracy of the NSV predictions obtained using the proposed model. This paper propose a numerical experiment to determine the effect of tip clearance size and temperature on k, in order to improve the critical NSV tip speed predictions using the proposed model. A review of the NSV model is presented along with the relevant background theory on the subject. Two different blade geometries are simulated to provide a generic approach to the study. The leakage flow velocity is calculated to estimate k and a correlation is proposed to model the behavior of the k parameter as a function of the tip clearance size. The latter was found to significantly improve the critical NSV speed predictions. The effect of operating temperature on k is also discussed. Finally, the variation of k with the aerodynamic loading is assessed and compared with available data in the literature to strengthen the generic nature of the results.

References

References
1.
Baumgartner
,
M.
,
Kamaler
,
F.
, and
Hourmouziadis
,
J.
,
1995
, “
Non-Engine Order Blade Vibration in a High Pressure Compressor
,” ISABE Paper No. 95-7094.
2.
Kielb
,
R. E.
,
Thomas
,
J. P.
,
Barter
,
J. W.
, and
Hall
,
K. C.
,
2003
, “
Blade Excitation by Aerodynamic Instabilities: A Compressor Blade Study
,”
ASME
Paper No. GT2003-38634. 10.1115/GT2003-38634
3.
Thomassin
,
J.
,
Vo
,
H. D.
, and
Mureithi
,
N. W.
,
2009
, “
Blade Tip Clearance Flow and Compressor NSV: The Jet Core Feedback Theory as the Coupling Mechanism
,”
ASME J. Turbomach.
,
131
, p.
011013
.10.1115/1.2812979
4.
März
,
J.
,
Hah
,
C.
, and
Neise
,
W.
,
2002
, “
An Experimental and Numerical Investigation Into the Mechanisms of Rotating Instability
,”
ASME J. Turbomach.
,
124
, pp.
367
375
.10.1115/1.1460915
5.
Mailach
,
R.
,
Lehmann
,
I.
, and
Vogeler
,
K.
,
2001
, “
Rotating Instabilities in an Axial Compressor Originating From the Fluctuating Blade Tip Vortex
,”
ASME J. Turbomach.
,
123
, pp.
453
463
.10.1115/1.1370160
6.
Vo
,
H. D.
,
2006
, “
Role of Tip Clerance Flow in the Generation of Non-Synchronous Vibrations
,”
Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno
,
NV, January 9–12
, AIAA Paper No. 2006-629.
7.
Vo
,
H. D.
,
Tan
,
C. S.
, and
Greitzer
,
E. M.
,
2008
, “
Criteria for Spike Initiated Rotating Stall
,”
ASME J. Turbomach.
,
130
, p.
011023
.10.1115/1.2750674
8.
Thomassin
,
J.
,
Vo
,
H. D.
, and
Mureithi
,
N. W.
,
2008
, “
Experimental Demonstration to the Tip Clearance Flow Resonance Behind Compressor Non-Synchronous Vibration
,” Proceedings of GT2008: ASME Turbo Expo Power for Land, Sea and Air,
Berlin
,
Germany
,
June
9
13
,
ASME
Paper No. GT2008-50303. 10.1115/GT2008-50303
9.
Drolet
,
M.
,
Thomassin
,
J.
,
Vo
,
H. D.
, and
Mureithi
,
N. W.
,
2009
, “
Numerical Investigation Into Non-Synchronous Vibrations of Axial Flow Compressors by the Resonant Tip Clearance Flow
,” Proceedings of GT2009: ASME Turbo Expo Power for Land, Sea and Air,
2009
,
Orlando, FL
,
June
8
12
,
ASME
Paper No. GT2009-59074. 10.1115/GT2009-59074
10.
Kameier
,
F.
, and
Neise
,
W.
,
1997
, “
Rotating Blade Flow Instability as a Source of Noise in Axial Turbomachines
,”
J. Sound Vib.
,
203
(
2
), pp.
833
853
.10.1006/jsvi.1997.0902
11.
Kameier
,
F.
, and
Neise
,
W.
,
1997
, “
Experimental Study of Tip Clearance Losses and Noise in Axial Turbomachines and Their Reduction
,”
ASME J. Turbomach.
,
119
, pp.
460
471
.10.1115/1.2841145
12.
Storer
,
J. A.
, and
Cumpsty
,
N. A.
,
1991
, “
Tip Leakage Flow in Axial Compressors
,”
ASME J. Turbomach.
,
113
, pp.
252
259
.10.1115/1.2929095
13.
Rains
,
D. A.
,
1954
, “
Tip Clearance Flows in Axial Flow Compressors and Pumps
,”
California Institute of Technology
,
Hydrodynamics and Mechanical Engineering Laboratories
, Pasadena, CA, Report No. 5.
14.
Spiker
,
M. A.
,
Kielb
,
R. E.
,
Hall
,
K. C.
, and
Thomas
,
J. P.
,
2008
, “
Efficient Design Method for Non-Synchronous Vibrations Using Enforced Motion
,” Proceedings of GT2008: ASME Turbo Expo Power for Land, Sea and Air,
Berlin
,
June
9
13
,
ASME
Paper No. GT2008-50599. 10.1115/GT2008-50599
15.
Vo
,
H. D.
,
2001
, “
Role of Tip Clearance Flow on Axial Compressor Stability
,” Ph.D. thesis,
MIT
,
Cambridge, MA.
16.
Jeffers
,
J. D.
,
1988
, “
Aeroelastic Thermal Effects
,”
AGARD Manual on Aeroelasticity in Axial-Flow Turbomachines
, AGARD-AG-298 Vol.
2
, pp.
21-1
21-6
.
17.
Day
,
I. J.
,
1993
, “
Stall Inception in Axial Flow Compressors
,”
ASME J. Turbomach.
,
115
, pp.
1
9
.10.1115/1.2929209
18.
Deppe
,
A.
,
Saathoff
,
H.
, and
Stark
,
U.
,
2004
, “
Stall Inception Phenomena in Three Single-Stage Low-Speed Axial Compressors
,”
10th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
,
Honolulu
,
HI
,
March
7
11
.
19.
Gysling
,
D. L.
, and
Greitzer
,
E. M.
,
1995
, “
Dynamic Control of Rotating Stall in Axial Flow Compressors Using Aeromechanical Feedback
,”
ASME J. Turbomach.
,
117
, pp.
307
319
.10.1115/1.2835665
20.
Haynes
,
J. M.
,
Hendricks
,
G. J.
, and
Epstein
,
A. H.
,
1994
, “
Active Stabilization of Rotating Stall in a Three-Stage Axial Compressor
,”
ASME J. Turbomach.
,
116
, pp.
226
239
.10.1115/1.2928357
21.
Höss
,
B.
,
Leinhos
,
D.
, and
Fottner
,
L.
,
2000
, “
Stall Inception in the Compressor System of a Turbofan Engine
,”
ASME J. Turbomach.
,
122
, pp.
32
44
.10.1115/1.555425
22.
Lin
,
F.
,
Li
,
M.
, and
Chen
,
J.
,
2006
, “
Long-To-Short Length-Scale Transition: A Stall Inception Phenomenon in an Axial Compressor With Inlet Distortion
,”
ASME J. Turbomach.
,
128
, pp.
130
140
.10.1115/1.2098808
23.
Nie
,
C.
,
Xu
,
G.
,
Cheng
,
X.
, and
Chen
,
J.
,
2002
, “
Micro Air Injection and its Unsteady Response in a Low-Speed Axial Compressor
,”
ASME J. Turbomach.
,
124
, pp.
572
579
.10.1115/1.1508383
24.
Hah
,
C.
,
Bergner
,
J.
, and
Schiffer
,
H. P.
,
2006
, “
Short Length-Scale Rotating Stall Inception in a Transonic Axial Compressor: Criteria and Mechanisms
,” Proceedings of GT2006: ASME Turbo Expo Power for Land, Sea and Air,
Barcelona
,
Spain
,
May
8
11
,
ASME
Paper No. GT2006-90045. 10.1115/GT2006-90045
25.
Seitz
,
P. A.
,
1999
, “
Casing Treatment for Axial Flow Compressors
,” Ph.D. thesis,
Department of Engineering, University of Cambridge
,
Cambridge, MA
.
26.
Hill
,
S. D.
,
Elder
,
R. L.
, and
McKenzie
,
A. B.
,
1998
, “
Application of Casing Treatment to an Industrial Axial-Flow Fan
,”
Proc. Inst. Mech. Eng.
,
212
, pp.
225
233
.
27.
Azimian
,
A. R.
,
Elder
,
R. L.
, and
McKenzie
,
A. B.
,
1990
, “
Application of Recess Vaned Casing Treatment to Axial Flow Fans
,”
ASME J. Turbomach.
,
112
, pp.
145
150
.10.1115/1.2927411
28.
Roy
,
B.
,
Chouhan
,
M.
, and
Kaundinya
,
K. V.
,
2005
, “
Experimental Study of Boundary Layer Control Through Tip Injection on Straight and Swept Compressor Blades
,” Proceedings of GT2005: ASME Turbo Expo Power for Land, Sea and Air, Reno, NV, June 6–9,
ASME
Paper No. GT2005-68304. 10.1115/GT2005-68304
29.
Deppe
,
A.
,
Saathoff
,
H.
, and
Stark
,
U.
,
2005
, “
Spike-Type Stall Inception in Axial-Flow Compressors
,”
Proceedings of the 6th European Conference on Turbomachinery, Fluid Dynamics and Thermodynamics
,
Lille
,
France
, March 7–11.
30.
Wisler
,
D. C.
, and
Beacher
,
B. F.
,
1989
, “
Improved Compressor Performance Using Recessed Clearance (Trenches)
,”
AIAA J. Propul.
,
5
(
4
), pp.
469
475
.10.2514/3.23178
31.
Prince
,
D. C.
, Jr.
,
Wisler
,
D. C.
, and
Hilvers
,
D. E.
,
1974
, “
Study of Casing Treatment Stall Margin Improvement Phenomena
,”
General Electric Company
, NASA Report No. CR-134552.
32.
Inoue
,
M.
,
Kuroumaru
,
M.
,
Tanino
,
T.
, and
Furukawa
,
M.
,
2000
, “
Propagation of Multiple Short-Length-Scale Stall Cells in an Axial Compressor Rotor
,”
ASME J. Turbomach.
,
122
, pp.
45
54
.10.1115/1.555426
33.
Shabbir
,
A.
, and
Adamczyk
,
J. J.
,
2005
, “
Flow Mechanism for Stall Margin Improvement Due to Circumferential Casing Grooves on Axial Compressors
,”
ASME J. Turbomach.
,
127
, pp.
708
717
.10.1115/1.2008970
You do not currently have access to this content.