The development of a high pressure turbine requires the accurate prediction of flow within and around film cooling holes. However, the length scales inherent to film cooling flows produce a large disparity against those of the mainstream flow; hence they cannot be resolved by a mesh generated for an aerodynamics analysis. Furthermore, the process of meshing cooling holes is not only time consuming but cumbersome; thus making the parametric study of film cooling effectiveness for a given blade geometry, using hole geometry and distribution, very difficult in a design environment. In this paper an immersed mesh block (IMB) approach is proposed which allows the refined mesh of a cooling hole to be immersed into the coarser mesh of a nozzle guide vane (NGV) and solved simultaneously while maintaining mass conservation. By employing two-way coupling, the flow physics in and around cooling holes is able to interact with the mainstream; hence the length scales of both types of flow are appropriately resolved. A generic cooling hole design can then be mapped to a given aerofoil geometry multiple times to achieve an appropriate distribution of cooling holes. The results show that for a realistic transonic blade, a configuration consisting of up to 200 cooling holes can be efficiently and accurately calculated—while retaining the original aerodynamic mesh but with a much enhanced resolution for the film cooling.

References

References
1.
Walters
,
D.
, and
Leylek
,
J.
,
2000
, “
A Detailed Analysis of Film Cooling Physics: Part I—Streamwise Injection With Cylindrical Holes
,”
ASME J. Turbomach.
,
122
, pp.
102
112
.10.1115/1.555433
2.
Garg
,
V.
, and
Gaugler
,
R.
,
1997
, “
Effect of Velocity and Temperature Distribution at the Hole Exit on Film Cooling of Turbine Blades
,”
ASME J. Turbomach.
,
116
, pp.
343
351
.10.1115/1.2841117
3.
Garg
,
V.
, and
Abhari
,
R.
,
1997
, “
Comparison of Predicted and Experimental Nusselt Number for a Film-Cooled Rotating Blade
,”
Int. J. Heat Fluid Flow
,
18
, pp.
452
460
.10.1016/S0142-727X(97)80003-3
4.
Walters
,
D.
, and
Leylek
,
J.
,
1997
, “
A Systematic Computational Methodology Applied to a Three-Dimensional Film-Cooling Flow Field
,”
ASME J. Turbomach.
,
119
, pp.
777
785
.10.1115/1.2841188
5.
Lakehal
,
D.
,
Theodoridis
,
G.
, and
Rodi
,
W.
,
1998
, “
Computation of Film Cooling of a Flat Plate by Lateral Injection From a Row of Holes
,”
Int. J. Heat Fluid Flow
,
19
, pp.
418
430
.10.1016/S0142-727X(98)10022-X
6.
McGovern
,
K.
, and
Leylek
,
J.
,
2000
, “
A Detailed Analysis of Film Cooling Physics: Part II—Compound Angle Injection With Cylindrical Holes
,”
ASME J. Turbomach.
,
122
, pp.
113
121
.10.1115/1.555434
7.
Heidmann
,
J.
,
Rigby
,
D.
, and
Ameri
,
A.
,
2000
, “
Three Dimensional Coupled Internal/External Simulations of a Film-Cooled Turbine Vane
,”
ASME J. Turbomach.
,
122
, pp.
348
359
.10.1115/1.555450
8.
Rozati
,
A.
, and
Tafti
,
D.
,
2007
, “
Large Eddy Simulation of Leading Edge Film Cooling: Part I—Computational Domain Effect of Coolant Inlet Condition
.”
ASME
Paper No. GT2007-27689. 10.1115/GT2007-27689
9.
Southworth
,
S.
,
Dunn
,
M.
,
Haldeman
,
C.
,
Chen
,
J.
,
Heitland
,
G.
, and
Liu
,
J.
,
2009
, “
Time-Accurate Predictions for a Fully Cooled High-Pressure Turbine Stage—Part I: Comparison of Predictions With Data
,”
ASME J. Turbomach.
,
131
(3)
, p.
031003
.10.1115/1.2985075
10.
Crawford
,
M.
,
Kays
,
W.
, and
Moffat
,
R.
,
1980
, “
Full-Coverage Film Cooling—Part I: Comparison of Heat Transfer Data for Three Injection Angles
,”
ASME J. Eng. Power
,
102
(
4
), pp.
1000
1005
.10.1115/1.3230334
11.
Crawford
,
M.
,
Kays
,
W.
, and
Moffat
,
R.
,
1980
, “
Full-Coverage Film Cooling—Part II: Heat Transfer Data and Numerical Simulation
,”
ASME J. Eng. Power
,
102
(
4
), pp.
1006
1012
.10.1115/1.3230335
12.
Burdet
,
A.
,
Abhari
,
R.
, and
Rose
,
M.
,
2007
, “
Modeling of Film Cooling—Part II: Model for Use in Three-Dimensional Computational Fluid Dynamics
,”
ASME J. Turbomach.
,
3
, pp.
663
676
.10.1115/1.2437219
13.
Tartinville
,
B.
, and
Hirsch
,
C.
,
2008
, “
Modelling of Film Cooling for Turbine Blade Design
,” ASME Turbo Expo 2008: Power for Land, Sea, and Air (GT2008), Berlin, June 9–13,
ASME
Paper No. GT2008-50316. 10.1115/GT2008-50316
14.
Demuren
,
A.
,
Rodi
,
W.
, and
Schonung
,
B.
,
1986
, “
Systematic Study of Film Cooling With a Three-Dimensional Calculation Procedure
,”
ASME J. Turbomach.
,
108
, pp.
124
130
.10.1115/1.3262011
15.
Leylek
,
J.
, and
Zerkle
,
R.
,
1994
, “
Discrete-Jet Film Cooling: A Comparison of Computational Results With Experiments
,”
ASME J. Turbomach.
,
116
, pp.
358
368
.10.1115/1.2929422
16.
Hoda
,
A.
, and
Acharya
,
S.
,
2000
, “
Predictions of a Film Cooling Jet in Crossflow With Different Turbulence Models
,”
ASME J. Turbomach.
,
122
, pp.
558
569
.10.1115/1.1302322
17.
Tyagi
,
M.
, and
Acharya
,
S.
,
2003
, “
Large Eddy Simulation of Film Cooling Flow From an Inclined Cylindrical Jet
,”
ASME J. Turbomach.
,
125
, pp.
734
742
.10.1115/1.1625397
18.
Tyagi
,
M.
, and
Acharya
,
S.
,
2005
, “
Large Eddy Simulation of Turbulent Flows in Complex and Moving Rigid Geometries Using the Immersed Boundary Method
,”
Int. J. Numer. Methods Fluids
,
48
, pp.
691
722
.10.1002/fld.937
19.
Moinier
,
P.
,
Muller
,
J.
, and
Giles
,
M.
,
2002
, “
Edge-Based Multigrid and Preconditioning for Hybrid Grids
,”
AIAA
,
40
, pp.
1954
1960
.10.2514/2.1556
20.
Wang
,
Z.
,
Hariharan
,
N.
, and
Chen
,
R.
,
2000
, “
Recent Development on the Conservation Property of Chimera
,”
Int. J. Comput. Fluid Dyn.
,
15
, p.
265
278
.10.1080/10618560108970033
21.
Sinha
,
A.
,
Bogard
,
D.
, and
Crawford
,
M.
,
1991
, “
Film-Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach.
,
113
, p.
442
449
.10.1115/1.2927894
22.
Lad
,
B.
, and
He
,
L.
,
2010
, “
Validation and Characterisation of Heat Transfer Studies on the MT1 Geometry
,”
Tech. Rep. University of Oxford
, Oxford, UK.
23.
Chana
,
K.
,
Patel
,
T.
, and
Ah
,
M.
,
2001
, “
A Summary of Measurements With a Non-Uniform Inlet Temperature Profile From the Mt1 Single Stage Hp Turbine
,”
Tech. Rep.
DERA/AS/PPD/CR010116, QinetiQ.
24.
Chana
,
K.
, and
Jones
,
T.
,
2003
, “
An Investigation on Turbine Tip and Shroud Heat Transfer
,”
ASME J. Turbomach.
,
125
, p.
513
520
.10.1115/1.1575253
You do not currently have access to this content.