Based on detailed experimental work conducted at a low speed test facility, this paper describes the transition process in the presence of a separation bubble with low Reynolds number, low free-stream turbulence, and steady main flow conditions. A pressure distribution has been created on a long flat plate by means of a contoured wall opposite of the plate, matching the suction side of a modern low-pressure turbine aerofoil. The main flow conditions for four Reynolds numbers, based on suction surface length and nominal exit velocity, were varied from 80,000 to 300,000, which covers the typical range of flight conditions. Velocity profiles and the overall flow field were acquired in the boundary layer at several streamwise locations using hot-wire anemometry. The data given is in the form of contours for velocity, turbulence intensity, and turbulent intermittency. The results highlight the effects of Reynolds number, the mechanisms of separation, transition, and reattachment, which feature laminar separation-long bubble and laminar separation-short bubble modes. For each Reynolds number, the onset of transition, the transition length, and the general characteristics of separated flow are determined. These findings are compared to the measurement results found in the literature. Furthermore, the experimental data is compared with two categories of correlation functions also given in the literature: (1) correlations predicting the onset of transition and (2) correlations predicting the mode of separated flow transition. Moreover, it is shown that the type of instability involved corresponds to the inviscid Kelvin-Helmholtz instability mode at a dominant frequency that is in agreement with the typical ranges occurring in published studies of separated and free-shear layers.

References

References
1.
Luo
,
J.
, and
Lakshminarayana
,
B.
,
1997
, “
Numerical Simulation of Turbine Blade Boundary Layer and Heat Transfer and Assessment of Turbulence Models
,”
J. Turbomach.
,
119
(
4
), pp.
794
801
.10.1115/1.2841153
2.
Mayle
,
R.
,
1991
, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
,
113
, pp.
509
537
.10.1115/1.2929110
3.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H.-W.
,
1997
, “
Boundary Layer Development in Axial Compressors and Turbines: Part 1 of 4—Composite Picture
,”
J. Turbomach.
,
119
(
1
), pp.
114
127
.10.1115/1.2841000
4.
Lake
,
J. P.
,
1999
, “
Flow Separation Prevention on a Turbine Blade in Cascade at Low Reynolds Number
,” Ph.D. thesis,
Air Force Institute of Technology
,
Wright-Patterson AFB, OH.
5.
Gostelow
,
J. P.
, and
Thomas
,
R. L.
,
2006
, “
Interaction Between Propagating Wakes and Flow Instabilities in the Presence of a Laminar Separation Bubble
,”
ASME Turbo Expo 2006: Power for Land, Sea and Air, Barcelona
,
Spain
, Paper No. GT2006-91193.
6.
Zhang
,
X.
,
Hodson
,
H.
, and
Harvey
,
N.
,
2005
, “
Unsteady Boundary Layer Studies on Ultra-High-Lift Low-Pressure Turbine Blades
”.
Proc. Inst. Mech. Eng.
, Part A, 219, pp.
451
460
.
7.
Mahallati
,
A.
, and
Sjolander
,
S. A.
, 2007, “
Aerodynamics of a Low-Pressure Turbine Airfoil at Low-Reynolds Numbers: Part 2— Blade-Wake Interaction
,”
ASME Conference Proceedings
,
2007
(
47934
), pp.
1025
1037
.
8.
Öztürk
,
B.
, and
Schobeiri
,
M. T.
,
2007
, “
Effect of Turbulence Intensity and Periodic Unsteady Wake Flow Condition on Boundary Layer Development, Separation, and Reattachment Along the Suction Surface of a Low-Pressure Turbine Blade
,”
J. Fluids Eng.
,
129
(
6
), pp.
747
763
.10.1115/1.2734188
9.
Miller
,
J. A.
, and
Fejer
,
A. A.
,
1964
, “
Transition Phenomena in Oscillating Boundary Layer Flows
,”
J. Fluid Mech.
,
18
, pp.
438
449
.10.1017/S0022112064000325
10.
Lou
,
W.
, and
Hourmouziadis
,
J.
,
2000
, “
Separation Bubbles Under Steady and Periodic-Unsteady Main Flow Conditions
,”
45th ASME International Gas Turbine & Aeroengine Technical Congress
,
Munich, Germany
, Paper No. 2000-GT-0270.
11.
Lin
,
J.
, and
Pauley
,
L.
,
1996
, “
Low-Reynolds-Number Separation on an Airfoil
,”
AIAA J.
,
34
, pp.
1570
1577
.10.2514/3.13273
12.
McAuliffe
,
B. R.
, and
Yaras
,
M. I.
,
2005
, “
Separation-Bubble-Transition Measurements on a Low-Re Airfoil Using Particle Image Velocimetry
,”
ASME Conference Proceedings
, pp.
1029
1038
.
13.
Gaster
,
M.
,
1967
, “
The Structure and Behaviour of Laminar Separation Bubbles
,” Technical Report No. ARC R&M 3595.
14.
Volino
,
R.
, and
Hultgren
,
L.
,
2001
, “
Measurements in Separated and Transitional Boundary Layers Under Low-Pressure Turbine Airfoil Conditions
,”
ASME J. Turbomach.
,
123
, pp.
189
198
.10.1115/1.1350408
15.
Volino
,
R. J.
, and
Bohl
,
D. G.
,
2004
, “
Separated Flow Transition Mechanism and Prediction With High and Low Freestream Turbulence Under Low Pressure Turbine Conditions
,”
ASME Conference Proceedings
, pp.
45
55
.
16.
Yaras
,
M. I.
,
2002
, “
Measurements of the Effects of Freestream Turbulence on Separation-Bubble Transition
,”
ASME Conference Proceedings
, pp.
647
660
.
17.
Mahallati
,
A.
,
McAuliffe
,
B. R.
,
Sjolander
,
S. A.
, and
Praisner
,
T. J.
,
2007
, “
Aerodynamics of a Low-Pressure Turbine Airfoil at Low-Reynolds Numbers: Part 1—Steady Flow Measurements
,”
ASME Conference Proceedings
,
2007
(
47934
), pp.
1011
1023
.
18.
Dovgal
,
A.
,
Kozlov
,
V.
, and
Michalke
,
A.
,
1994
, “
Laminar Boundary Layer Separation: Instab. and Associated Phenomena
,”
Prog. Aerosp. Sci.
,
30
, pp.
61
94
.10.1016/0376-0421(94)90003-5
19.
McAuliffe
,
B. R.
,
2006
, “
Numerical Study of Instability Mechanisms Leading to Transition in Separation Bubbles
,”
ASME Turbo Expo 2006: Power for Land, Sea and Air, Barcelona
,
Spain
, Paper No. GT2006-91018.
20.
Roberts
,
S. K.
, and
Yaras
,
M. I.
,
2005
, “
Boundary-Layer Transition Affected by Surface Roughness and free-Stream Turbulence
,”
ASME J. Fluids Eng.
,
127
, pp.
449
457
.10.1115/1.1906266
21.
McAuliffe
,
B. R.
, and
Yaras
,
M. I.
,
2007
, “
Transition Mechanisms in Separation Bubbles Under Low and Elevated Freestream Turbulence
,”
ASME Turbo Expo 2007: Power for Land, Sea and Air, Montreal
,
QC, Canada
, Paper No. GT2007-27605.
22.
Hatman
,
A.
, and
Wang
,
T.
,
1999
, “
A Prediction Model for Separated-Flow Transition
,”
ASME J. Turbomach.
,
121
, pp.
594
602
.10.1115/1.2841357
23.
Lou
,
W.
, and
Hourmouziadis
,
J.
,
1999
, “
Experimental Investigation of Periodic-Unsteady Flat Plate Boundary Layers With Pressure Gradients
,”
3rd ASME/JSME Joint Fluids Engineering Division Summer Meeting
,
San Francisco, CA
, Paper No. FEDSM99-7190.
24.
Durst
,
F.
, and
Zanoun
,
E. S.
,
2002
, “
Experimental Investigation of Near-Wall Effects on Hot-Wire Measurements
,”
Exp. Fluids
,
33
, pp.
210
218
.10.1007/s00348-002-0472-1
25.
Chew
,
Y.
,
Khoo
,
B.
,
Lim
,
C.
, and
Teo
,
C.
,
1998
, “
Dynamic Response of a Hot-Wire Anemometer. Part II: A Flush-Mounted Hot-Wire and Hot-Film Probes for Wall Shear Stress Measurements
,”
Meas. Sci. Technol.
,
9
, pp.
764
778
.10.1088/0957-0233/9/5/006
26.
Chew
,
Y. T.
,
Shah
,
D. A.
, and
Wan
,
J.
,
1999
, “
An Envelope Method for Detection of Turbulence Intermittency in a Transitional Boundary Layer
,”
Fluid Dyn. Res.
,
24
, pp.
7
22
.10.1016/S0169-5983(98)00012-4
27.
Cebeci
,
T.
, and
Smith
,
A. M. O.
,
1974
,
Analysis of Turbulent Boundary Layers.
Academic Press
,
New York
.
28.
Thwaites
,
B.
,
1949
, “
Approximate Calculation of the Laminar Boundary Layer
,”
Aeronaut. Q.
,
1
, p.
245
.
29.
Talan
,
M.
, and
Hourmouziadis
,
J.
,
2002
, “
Characteristic Regimes of Transitional Separation Bubbles in Unsteady Flow
,”
J. Flow, Turbul. Combust.
,
69
, pp.
207
227
.10.1023/A:1027355105017
30.
Ripley
,
M.
, and
Pauley
,
L.
,
1993
, “
The Unsteady Structure of Two-Dimensional Steady Laminar Separation
,”
Phys. Fluids
,
5
, pp.
3099
3106
.10.1063/1.858719
31.
Voke
,
P.
, and
Yang
,
Z.
,
1999
, “
Large-Eddy Simulation of Separation and Transition for Turbomachinery Flows
,”
Industrial and Environmental Applications of Direct and Large-Eddy Simulation, Vol. 529 of Lecture Notes in Physics
, pp.
46
63
.10.1007/BFb0106088
32.
Ho
,
C.
, and
Huerre
,
P.
,
1984
, “
Perturbed Free Shear Layers
,”
Annu. Rev. Fluid Mech.
,
16
, pp.
365
422
.10.1146/annurev.fl.16.010184.002053
33.
Bellows
,
W. J.
,
1985
, “
An Experimental Study in Leading Edge Separating-Reattaching Boundary Layer Flows
,” Ph.D. thesis,
Rensselaer Polytechnic Institute
,
Troy, NY.
34.
Davis
,
R.
,
Carter
,
J. E.
, and
Reshotko
,
E.
,
1987
, “
Analysis of Transitional Separation Bubbles on Infinite Swept Wings
,”
AIAA J.
,
25
, pp.
421
428
.10.2514/3.9640
35.
Praisner
,
T. J.
, and
Clark
,
J. P.
,
2007
, “
Predicting Transition in Turbomachinery - Part I: A Review and New Model Development
,”
J. Turbomach.
,
129
(
1
), pp.
1
13
.10.1115/1.2366513
36.
Roberts
,
W.
,
1980
, “
Calculation of Laminar Separation Bubbles and Their Effect on Airfoil Performance
,”
AIAA J.
,
18
, pp.
25
31
.10.2514/3.50726
You do not currently have access to this content.