This work supports new gas turbine designs for improved performance by evaluating the use of endwall contouring in a cascade that is representative of a first stage stator passage. Contouring accelerates the flow, reducing the thickness of the endwall inlet boundary layer to the turbine stage and reducing the strength of secondary flows within the passage. The reduction in secondary flows leads to less mixing in the endwall region. This allows for an improved cooling of the endwall and airfoil surfaces with injected and leakage flows. The present paper documents the component misalignment and injected and leakage flow effects on the aerodynamic losses within a passage that has one contoured and one straight endwall. Steps and injected flows within the passage can lead to thicker endwall boundary layers, stronger secondary flows, and possibly additional vortex structures in the passage. The paper compares losses with various steps, gaps, and leakage flows to assess their importance in this contoured passage. In particular, features associated with the combustor-to-turbine transition piece and the slashface on the vane platform are addressed. An n-factorial study is used to quantify the importance of such effects on aerodynamic losses.

References

1.
Herzig
,
H. Z.
,
Hansen
,
A. G.
, and
Costello
,
G. R.
,
1954
, “
A Visualization Study of Secondary Flows in Cascades
,”
NACA Report No. 1163
.
2.
Pierce
,
F. S.
, and
M. D.
,
Harsh
,
1985
, “
Three-Dimensional Turbulent Boundary Layer Separation at the Junction of a Streamlined Cylinder With a Flat Plate
,”
Flow Visualization III, Proceedings of the Third International Symposium on Flow Visualization
,
Hemisphere
, Washington DC
, pp.
331
335
.
3.
Eckerle
,
W. A.
, and
L. S.
,
Langston
,
1987
, “
Horseshoe Vortex Formation Around a Cylinder
,”
ASME J. Turbomach.
109
, pp.
278
285
.10.1115/1.3262098
4.
Pierce
,
F. J.
, and
Shin
,
J.
,
1992
, “
The Development of a Turbulent Junction Vortex System
,”
ASME Trans. J. Fluids Eng.
,
114
(
4
), pp.
559
65
.10.1115/1.2910068
5.
Goldstein
,
R. J.
, and
Karni
,
J.
,
1984
, “
The Effect of a Wall Boundary Layer on Local Mass Transfer From a Cylinder in Crossflow
,”
ASME Trans. J. Heat Transfer
,
106
, pp.
260
267
.10.1115/1.3246667
6.
Langston
,
L. S.
,
Nice
,
M. L.
, and
Hooper
,
R. M.
,
1977
, “
Three-Dimensional Flow Within a Turbine Cascade Passage
,”
ASME J. Eng. Power
,
99
, pp.
21
28
.10.1115/1.3446247
7.
Langston
,
L. S.
,
1980
, “
Crossflow in a Turbine Cascade Passage
,”
ASME J. Eng. Power
,
10
, pp.
866
874
.10.1115/1.3230352
8.
Chung
,
J. T.
, and
Simon
,
T. W.
,
1990
, “
Three-Dimensional Flow Near the Blade/Endwall Junction of a Gas Turbine. Visualization in a Large-Scale Cascade Simulator
,”
ASME Paper No. 90-WA/HT-4
.
9.
Deich
,
M. E.
,
Zaryankin
,
A. D.
,
Filippov
,
G. A.
, and
Zatsepin
,
N. F.
,
1960
, “
Method of Increasing the Efficiency of Turbine Stages With Short Blades
,”
Translation No. 2816, Associated Electrical Industries (Manchester) Limited
.
10.
Morris
,
A. W. H.
, and
Hoare
,
R. G.
,
1975
. “
Secondary Loss Measurements in a Cascade of Turbine Blades With Meridional Wall Profiling
,”
ASME Paper No. 75-WA/GT-13
.
11.
Kopper
,
F. C.
,
Milano
,
R.
, and
Vanco
,
M.
,
1981
, “
Experimental Investigation of Endwall Profiling in a Turbine Vane Cascade
,”
AIAA J.
,
19
(
8
), pp.
1033
1040
.10.2514/3.51032
12.
Boletis
,
E.
,
1985
, “
Effects of Tip Endwall Contouring on the Three-Dimensional Flow Field in an Annular Turbine Nozzle Guide Vane—Part 1: Experimental Investigation
,”
ASME J. Eng. Gas Turbines Power
,
107
, pp.
983
990
.10.1115/1.3239845
13.
Arts
,
T.
,
1985
, “
Effects of Tip Endwall Contouring on the Three-Dimensional Flow Field in an Annular Turbine Nozzle Guide Vane—Part 2: Numerical Investigation
,”
ASME Paper No. 85-GT-108
.
14.
Dossena
,
V.
,
Perdichizzi
,
A.
, and
Savini
,
M.
,
1999
, “
The Influence of Endwall Contouring on the Performance of a Turbine Nozzle Guide Vane
,”
ASME J. Eng. Power
,
121
, pp.
200
208
.10.1115/1.2841302
15.
Burd
,
S. W.
, and
Simon
,
T. W.
,
2000
, “
Flow Measurements in a Nozzle Guide Vane Passage With a Low Aspect Ratio and Endwall Contouring
,”
ASME Paper No. 2000-GT-0213
.
16.
Sauer
,
H.
,
Muller
,
R.
, and
Vogeler
,
K.
,
2001
, “
Reduction of Secondary Flow Losses in Turbine Cascades by Leading Edge Modifications at the Endwall
,”
ASME J. Eng. Power
,
123
, pp.
207
213
.10.1115/1.1354142
17.
Becz
,
S.
,
Majewski
,
M. S.
, and
Langston
,
L. S.
,
2003
, “
Leading Edge Modification Effects on Turbine Cascade Endwall Loss
,”
ASME
Paper No. GT2003-38898.10.1115/GT2003-38898
18.
Becz
,
S.
,
Majewski
,
M. S.
, and
Langston
,
L. S.
,
2004
, “
An Experimental Investigation of Contoured Leading Edges for Secondary Flow Loss Reduction
,”
ASME
Paper No. GT2004-53964.10.1115/GT2004-53964
19.
Blair
,
M. F.
,
1974
, “
An Experimental Study of Heat Transfer and Film Cooling on Large-Scale Turbine Endwalls
,”
ASME Trans. J. Heat Transfer
,
96
, pp.
524
529
.10.1115/1.3450239
20.
Granser
,
D.
, and
Schulenberg
,
T.
,
1990
, “
Prediction and Measurement of Film Cooling Effectiveness for a First-Stage Turbine Vane Shroud
,”
ASME Paper No. 90-GT-95
.
21.
Goldman
,
L. J.
, and
McLallin
,
K. L.
,
1977
, “
Effects of Endwall Cooling on Secondary Flows in Turbine Stator Vanes
,” Proceedings of the 49th Meeting of the AGARD Propulsion and Energetics Panel, The Hague, The Netherlands. March 28–30,
Paper No. AGARD-CPP-214
.
22.
Sieverding
,
C. H.
, and
Wilputte
,
P.
,
1980
, “
Influence of Mach Number and Endwall Cooling on Secondary Flows in a Straight Nozzle Cascade
,”
ASME Paper No. 80-GT-52
.
23.
Barigozzi
,
G.
,
Franchini
,
G.
,
Perdichizzi
,
A.
, and
Quattrore
,
M.
,
2010
, “
Endwall Film Cooling Effects on Secondary Flows in a Contoured Endwall Nozzle Vane
,”
ASME J. Eng. Power
,
132
, p.
041005
.10.1115/1.3192147
24.
Biesinger
,
T. E.
, and
Gregory-Smith
,
D. G.
,
1993
. “
Reduction in Secondary Flows and Losses in a Turbine Cascade by Upstream Boundary Layer Blowing
,”
ASME Paper No. 93-GT-114
.
25.
Ghosh
,
K.
, and
Goldstein
,
R. J.
,
2011
, “
Effect of Inlet Skew on Heat/Mass Transfer from a Simulated Turbine Blade
,”
ASME
Paper No. GT2011-46543.10.1115/GT2011-46543
26.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
,
1995
, “
Distribution of Film Cooling Effectiveness on a Turbine Endwall Measured Using the Ammonia and Diazo Technique
,”
ASME Paper No. 95-GT-1
.
27.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
,
1997
, “
Aerodynamic Aspects of Endwall Film-Cooling
,”
ASME J. Turbomach.
,
119
(4)
, pp.
786
793
.10.1115/1.2841189
28.
Kost
,
F.
, and
Nicklas
,
M.
,
2001
, “
Film-Cooled Turbine Endwall in a Transonic Flow Field—Part I: Aerodynamic Measurements
,”
ASME J. Eng. Power
,
123
, pp.
709
719
.10.1115/1.1400112
29.
Knost
,
D. G.
, and
Thole
,
K. A.
,
2003
, “
Computational Predictions of Endwall Film-Cooling for a First Stage Vane
,”
ASME
Paper No. GT2003-38252.10.1115/GT2003-38252
30.
Yamao
,
H.
,
Aoki
,
S.
,
Takeishi
,
K.
, and
Takeda
,
K.
,
1987
, “
An Experimental Study for Endwall Cooling Design of Turbine Vanes
,”
Paper No. 87-TOKYO-IGTC-67
.
31.
Hada
,
S.
, and
Thole
,
K. A.
,
2011
, “
Computational Study of a Midpassage Gap and Upstream Slot on Vane Endwall Film-Cooling
,”
ASME J. Eng. Power
,
133
, p.
011024
.10.1115/1.4001135
32.
Aunapu
,
N. V.
,
Volino
,
R. J.
,
Flack
,
K. A.
, and
Stoddard
,
R. M.
,
2000
, “
Secondary Flow Measurements in a Turbine Passage With Endwall Flow Modification
,”
ASME Paper No. 2000-GT-0212
.
33.
Simon
,
T.
, and
Piggush
,
J.
,
2006
, “
Turbine Endwall Aerodynamics and Heat Transfer
,”
AIAA J. Power Propul.
,
22
, pp.
301
312
.10.2514/1.16344
34.
Ames
,
F. E.
,
1994
, “
Experimental Study of Vane Heat Transfer and Aerodynamics at Elevated Level of Turbulence
,”
NASA Report No. CR-4633
.
35.
Oke
,
R. A.
,
Simon
,
T. W.
,
Shih
,
T.
,
Zhu
,
B.
,
Lin
,
L.
, and
Chyu
,
M.
,
2001
, “
Measurements Over a Film-Cooled, Contoured Endwall With Various Coolant Injection Rates
,”
ASME Paper No. 2001-GT-0140
.
36.
Zhu
,
B.
,
Lin
,
Y-L.
,
Shih
,
T. I.-P.
,
Oke
,
R. A.
,
Simon
,
T. W.
, and
Chyu
,
K.
,
2001
, “
Computational Study of a Two-Passage Turbine Guide-Vane Cascade With End-Wall Contouring
,”
ASME Computers and Information Engineering Conference, Paper No. DETC-CIE-21762
.
37.
Simon
,
T. W.
, and
Goldstein
,
R. J.
,
1996
, “
Instrumentation for Fluid Dynamics—Pressure Measurements
,”
Handbook of Fluid Dynamics and Fluid Machinery
,
Wiley
,
New York
.
38.
Burd
,
S. W.
, and
Simon
,
T. W.
,
2000
, “
Effects of Slot Bleed Injection Over a Contoured End Wall on Nozzle Guide Vane Cooling Performance—Part I: Flow Field Measurements
,”
ASME Paper No. 2000-GT-199
.
39.
Chung
,
J. T.
, and
T. W.
,
Simon
.
1991
,
Three-Dimensional Flow Near the Blade/Endwall Junction of a Gas Turbine: Application of a Boundary Layer Fence
,”
ASME Paper No. 91-GT-45
.
40.
Piggush
,
J. D.
, and
Simon
,
T. W.
,
2005
, “
Flow Measurements in a First Stage Nozzle Cascade Having Leakage and Assembly Features: Effects of Endwall Steps and Leakage on Aerodynamic Losses
ASME
Paper No. IMECE2005-83032.10.1115/IMECE2005-83032
You do not currently have access to this content.