This paper presents an experimental and computational study of non-axisymmetric rotor endwall profiling in a low pressure turbine. Endwall profiling has been proven to be an effective technique to reduce both turbine blade row losses and the required purge flow. For this work, a rotor with profiled endwalls on both hub and shroud is considered. The rotor tip and hub endwalls have been designed using an automatic numerical optimization that is implemented in an in-house MTU code. The endwall shape is modified up to the platform leading edge. Several levels of purge flow are considered in order to analyze the combined effects of endwall profiling and purge flow. The non-dimensional parameters match real engine conditions. The 2-sensor Fast Response Aerodynamic Probe (FRAP) technique system developed at ETH Zurich is used in this experimental campaign. Time-resolved measurements of the unsteady pressure, temperature and entropy fields between the rotor and stator blade rows are made. For the operating point under investigation, the turbine rotor blades have pressure side separations. The unsteady behavior of the pressure side bubble is studied. Furthermore, the results of unsteady RANS simulations are compared to the measurements and the computations are also used to detail the flow field with particular emphasis on the unsteady purge flow migration and transport mechanisms in the turbine main flow containing a rotor pressure side separation. The profiled endwalls show the beneficial effects of improved measured efficiency at this operating point, together with a reduced sensitivity to purge flow.

References

References
1.
Riollet
,
G.
, 1970, “
Curved Channels Through Which a Gas or Vapor Flows
,” U. S. Patent No. 3529631.
2.
Rose
,
M. G.
, 1994, “
Non-Axisymetric Endwall Profiling in the HP NGVs of an Axial Flow Gas Turbine
,”
Proceedings of the ASME Turbo Expo
, Paper No. 94-GT-249.
3.
Hartland
,
J. C.
,
Gregory-Smith
,
D. G.
,
Harvey
,
N. W.
, and
Rose
,
M. G.
, 2000, “
Non-Axisymmetric Turbine End Wall Design: Part II—Experimental Validation
,”
Trans. ASME J. Turbomach.
,
122
(
2
), pp.
286
293
.
4.
Ingram
,
G. L.
,
Gregory-Smith
,
D. G.
,
Rose
,
M. G.
,
Harvey
,
N. W.
, and
Brennan
,
G.
, 2002, “
The Effect of End-Wall Profiling on Secondary Flow and Loss Development in a Turbine Cascade
,”
Proceedings of the ASME Turbo Expo
, Paper No. GT2002-30339.
5.
Brennan
,
G.
,
Harvey
,
N. W.
,
Rose
,
M. G.
,
Fomison
,
N.
, and
Taylor
,
M. D.
, 2003, “
Improving the Efficiency of the Trent 500 HP Turbine Using Non-Axisymetric End Walls: Part I: Turbine Design
,”
Trans. ASME J. Turbomach.
,
125
(
3
), pp.
497
504
.
6.
Rose
,
M. G.
,
Harvey
,
N. W.
,
Seaman
,
P.
,
Newman
,
D. A.
, and
McManus
,
D.
, 2001, “
Improving the Efficiency of the Trent 500 HP Turbine Using Non-Axisymmetric End Walls: Part II: Experimental Validation
,”
Proceedings of the ASME Turbo Expo
, Paper No. GT2001-0505.
7.
Duden
,
A.
,
Raab
,
I.
, and
Fottner
,
L.
, 1999, “
Controlling the Secondary Flow in a Turbine Cascade by 3D Airfoil Design and Endwall Contouring
,”
Trans. ASME J. Turbomach.
,
121
(
2
), pp.
191
199
.
8.
Praisner
,
T. J.
, Allen-
Bradley
,
E.
,
Grover
,
E. A.
,
Knezevici
,
D. C.
, and
Sjolander
,
S. A.
, 2007, “
Application of Non-Axisymmetric Endwall Contouring to Conventional and High-Lift Turbine Airfoils
,”
Proceedings of the ASME Turbo Expo
, Paper No. GT2007-27579.
9.
Schuepbach
,
P.
,
Rose
,
M. G.
,
Abhari
,
R. S.
,
Germain
,
T.
,
Raab
,
I.
, and
Gier
,
J.
, 2008, “
Improving Efficiency of a High-Work Turbine Using Non-Axisymmetric Endwalls. Part II: Time-Resolved Flow Physics
,”
Proceedings of the ASME Turbo Expo
, Paper No. GT2008-50470.
10.
Germain
,
T.
,
Nagel
,
M.
,
Raab
,
I.
,
Schuepbach
,
P.
,
Rose
,
M. G.
, and
Abhari
,
R. S.
, 2010, “
Improving Efficiency of a High-Work Turbine Using Non-Axisymmetric Endwalls. Part I: Endwall Design and Performance
,”
Trans. ASME J. Turbomach.
,
132
(
2
), p.
021007
.
11.
Kobayashi
,
N.
,
Matsumato
,
M.
, and
Shizuya
,
M.
, 1984, “
An Experimental Investigation of a Gas-Turbine Disk Cooling System
,”
Trans. ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
136
141
.
12.
Chew
,
J. W.
,
Dadkhah
,
S.
, and
Turner
,
A. B.
, 1992, “
Rim Sealing of Rotor-Stator Wheelspaces in the Absence of External Flow
,”
Trans. ASME J. Turbomach.
,
114
(
2
), pp.
433
438
.
13.
Dadkhah
,
S.
,
Turner
,
A. B.
, and
Chew
,
J. W.
, 1992, “
Performance of Radial Clearance Rim Seals in Upstream and Downstream Rotor-Stator Wheelspaces
,”
Trans. ASME J. Turbomach.
,
114
(
2
), pp.
439
445
.
14.
McLean
,
C.
,
Camci
,
C.
, and
Glezer
,
B.
, 2001, “
Mainstream Aerodynamic Effects Due to Wheelspace Coolant Injection in a High-Pressure Turbine Stage: Part II—Aerodynamic Measurements in the Rotational Frame
,”
Trans. ASME J. Turbomach.
,
123
(
4
), pp.
697
703
.
15.
Ong
,
J. H. P.
,
Miller
,
R. J.
, and
Uchida
,
S.
, 2006, “
The Effect of Coolant Injection on the Endwall Flow of a High Pressure Turbine
,”
Proceedings of the ASME Turbo Expo
, Paper No. GT2006-91060.
16.
Paniagua
,
G.
,
Denos
,
R.
, and
Almeida
,
S.
, 2004, “
Effect of the Hub Endwall Cavity Flow on the Flow-Field of a Transonic High-Pressure Turbine
,”
Trans. ASME J. Turbomach.
,
126
(
4
), pp.
578
586
.
17.
Reid
,
K.
,
Denton
,
J.
,
Pullan
,
G.
,
Curtis
,
E.
, and
Longley
,
J.
, 2006, “
The Effect of Stator-Rotor Hub Sealing Flow on the Mainstream Aerodynamics of a Turbine
,”
Proceedings of the ASME Turbo Expo
, Paper No. GT2006-90838.
18.
Marini
,
R.
, and
Girgis
,
S.
, 2007, “
The Effect of Blade Leading Edge Platform Shape on Upstream Disk Cavity to Mainstream Flow Interaction of a High-Pressure Turbine Stage
,”
Proceedings of the ASME Turbo Expo
, Paper No. GT2007-27429.
19.
Schuepbach
,
P.
,
Rose
,
M. G.
,
Abhari
,
R. S.
,
Germain
,
T.
,
Raab
,
I.
, and
Gier
,
J.
, 2010, “
Effects of Suction and Injection Purge-Flow on the Secondary Flow Structures of a High-Work Turbine
,”
Trans. ASME J. Turbomach.
,
132
(
2
), p.
021021
.
20.
Brear
,
M. J.
,
Hodson
,
H.
, and
Harvey
,
N.
, 2002, “
Pressure Surface Separations in Low-Pressure Turbines—Part 1: Midspan Behaviour
,”
Trans. ASME J. Turbomach.
,
124
(
3
), pp.
393
401
.
21.
Yamamoto
,
A.
, and
Nouse
,
H.
, 1988, “
Effects of Incidence on Three-Dimensional Flows in a Linear Turbine Cascade
,”
ASME J. Turbomach.
,
110
(
4
), pp.
486
496
.
22.
Hodson
,
H.
, and
Dominy
,
R.
, 1987, “
The Off-Design Performance of a Low-Pressure Turbine Cascade
,”
ASME J. Turbomach.
,
109
(
2
), pp.
201
209
.
23.
Brear
,
M. J.
,
Hodson
,
H.
,
Gonzalez
,
P.
, and
Harvey
,
N.
, 2002, “
Pressure Surface Separations in Low-Pressure Turbines—Part 2: Interactions With the Secondary Flow
,”
ASME J. Turbomach.
,
124
(
3
), pp.
402
409
.
24.
Behr
,
T.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
, 2007, “
Unsteady Flow Physics and Performance of a One-and 1/2-Stage Unshrouded High Work Turbine
,”
Trans. ASME J. Turbomach.
,
129
(
2
), pp.
348
359
.
25.
Germain
,
T.
,
Nagel
,
M.
, and Baier, R-D., 2007, “
Visualisation and Quantification of Secondary Flows: Application to Turbine Bladings With 3D-Endwalls
,”
Proceedings of the ISAIF
, Lyon, France.
26.
Kupferschmied
,
P.
,
Kopperl
,
O.
,
Gizzi
,
W. P.
, and
Gyarmathy
,
G.
, 2000, “
Time Resolved Flow Measurements With Fast Aerodynamic Probes in Turbomachinery
,”
Meas. Sci. Technol.
,
11
, pp.
1036
1054
.
27.
Pfau
,
A.
,
Schlienger
,
J.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
, 2003, “
Unsteady 3-Dimensional Flow Measurement Using a Miniature Virtual 4-Sensor Fast Response Aerodynamic Probe (FRAP)
,”
Proceedings of the ASME Turbo Expo
, Paper No. GT2003-38128.
28.
Porreca
,
L.
,
Hollenstein
,
M.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
, 2007, “
Turbulence Measurements and Analysis in a Multistage Axial Turbine
,”
J. Propul. Power
,
23
(
1
), pp.
227
234
.
29.
Bashforth
,
F.
, and
Adams
,
J.
, 1883,
An Attempt to Test the Theories of Capillary Action by Comparing the Theoretical and Measured Forms of Drops of Fluid, With an Explanation of the Method of Integration Employed in Constructing the Tables Which Give the Theoretical Forms of Such Drops
,
Cambridge University Press
,
Cambridge, UK
.
30.
Moore
,
J.
, 1973, “
Wake and an Eddy in a Rotating, Radial-Flow Passage, Part 1: Experimental Observations
,”
ASME J. Eng. Power
,
95
(
3
), pp.
205
212
.
31.
Greitzer
,
E. M.
,
Tan
,
C.
, and
Graf
,
M.
, 2004,
Internal Flow, Concepts and Applications
,
1st ed.
,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.