In this work, aerothermal investigations of a highly loaded HP turbine blade are presented. The purpose of such investigations is to improve the physical understanding of the heat transfer in separated flow regions, with the final goal of optimizing cooling configurations for aerodynamically highly loaded turbine designs. The analysis is focused on the T120 cascade, that was recently tested experimentally in the framework of the European project AITEB-2 (Aero-thermal Investigation of Turbine Endwalls and Blades). Such a cascade has a relatively low solidity that is responsible for the formation of a laminar separation bubble on the suction side of the blade. Separated-flow transition and transonic conditions downstream of the throat result in a flow configuration that is very challenging for traditional RANS solvers. Moreover, the separated flow transition pattern was found to have a strong impact on both the aerodynamic and thermal aspects. The study was carried out using a novel three-equation, transition-sensitive, turbulence model. It is based on the coupling of an additional transport equation for the laminar kinetic energy to the Wilcox k - ω model. Such an approach allows one to take into account the increase of the nonturbulent fluctuations in the pretransitional and transitional region. Comprehensive aerodynamic and heat transfer measurements were available for comparison purposes. In particular, heat transfer measurements cover different Mach and Reynolds numbers, in both steady and periodic unsteady inflow conditions. A detailed comparison between measurements and computations is presented, and the impact of transition-related aspects on the surface heat transfer is discussed.

References

References
1.
Luo
,
J.
, and
Lakshminarayana
,
B.
, 1997, “
Numerical Simulation of Turbine Blade Boundary Layer and Heat Transfer and Assessment of Turbulence Models
,”
ASME J. Turbomach.
,
119
(
4
), pp.
749
801
.
2.
Mayle
,
R. E.
, and
Schulz
,
A.
, 1997, “
The Path to Predicting Bypass Transition
,”
ASME J. Turbomach.
,
119
(
3
), pp.
405
411
.
3.
Harrison
,
L. H.
, and
Bogard
,
D.
, 2008, “
Comparison of RANS Turbulence Models for Prediction of Film Cooling Performance
,” ASME Paper No. GT2008-51423.
4.
Martini
,
P.
,
Schulz
,
A.
,
Bauer
,
H.-J.
, and
Whitney
,
C.
, 2006, “
Detached Eddy Simulation of Film Cooling Performance on the Trailing Edge Cutback of Gas Turbine Airfoils
,”
ASME J. Turbomach.
,
128
(
2
), pp.
292
299
.
5.
Menter
,
F. R.
,
Langtry
,
R.
, and
Hansen
,
T.
, 2004, “
CFD Simulation of Turbomachinery Flows - Verification, Validation and Modelling
,”
Proceedings ECCOMAS, Jyväskylä
, July 24-28.
6.
Duchaine
,
F.
,
Copron
,
A.
,
Pons
,
L.
,
Moureau
,
V.
,
Nicoud
,
F.
, and
Poinsot
,
T.
, 2009, “
Development and Assessment of a Coupled Strategy for Conjugate Heat Transfer With Large Eddy Simulation: Application to a Cooled Turbine Blade
,”
Int. J. Heat Fluid Flow
,
30
(
6
), pp.
1129
1141
.
7.
Okita
,
Y.
,
Nakamate
,
C.
,
Kumada
,
M.
, and
Ikeda
,
M.
, 2008, “
Film Cooling in a Separated Flow Field on a Novel Lightweight Turbine Blade
,” ASME Paper No. GT2008-50228.
8.
Gomes
,
R.
, and
Niehuis
,
R.
, 2009, “
Film Cooling Effectiveness Measurements on Highly Loaded Blades With Flow Separation
,”
Proceedings of the 8th European Conference on Turbomachinery, Fluid Dynamics and Thermodynamics (ETC)
.
9.
Gomes
,
R.
, and
Niehuis
,
R.
, 2010, “
Aerothermodynamics of a High-Pressure Turbine Blade With Very High Loading and Vortex Generators
,” ASME Paper No. 2010-GT-23543.
10.
Doerffer
,
P.
,
Flaszynski
,
P.
, and
Szwaba
,
R.
, 2009, “
New Concept of Test Section for Flow Modelling on Suction Side of Gas Turbine Blade
,” Paper No. ISABE-2009-1324.
11.
Menter
,
F. R.
,
Langtry
,
R. B.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
,
Huang
,
P. G.
, and
Völker
,
S.
, 2006, “
A Correlation-Based Transition Model Using Local Variables - Part I: Model Formulation
,”
ASME J. Turbomach.
,
128
(
3
), pp.
413
422
.
12.
Langtry
,
R. B.
,
Menter
,
F. R.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
,
Huang
,
P. G.
, and
Völker
,
S.
, 2006, “
A Correlation-Based Transition Model Using Local Variables - Part II: Test Cases and Industrial Applications
,”
ASME J. Turbomach.
,
128
(
3
), pp.
423
434
.
13.
Kožulović
,
D.
,
Röber
,
T.
, and
Nürnberger
,
D.
, 2007, “
Application of a Multimode Transition Model to Turbomachinery Flows
,”
7th European Turbomachinery Conference
, Athens, Greece.
14.
Walters
,
D. K.
, and
Leylek
,
J. H.
, 2005, “
Computational Fluid Dynamics Study of Wake-Induced Transition on a Compressor-Like Flat Plate
,”
ASME J. Turbomach.
,
127
(
1
), pp.
52
63
.
15.
Lardeau
,
S.
, and
Leschziner
,
M. A.
, 2006, “
Modelling of Wake-Induced Transition in Low-Pressure Turbine Cascades
,”
AIAA J.
,
44
(
8
), pp.
1854
1865
.
16.
Pacciani
,
R.
,
Marconcini
,
M.
,
Fadai-Ghotbi
,
A.
,
Lardeau
,
S.
, and
Leschziner
,
M.
, 2009, “
Calculation of High-Lift Cascade in Low-Pressure Turbine Conditions Using a Three-Equation Model
,” ASME Paper No. 2009-GT-55957.
17.
Wilcox
,
D. C.
, 1998,
Turbulence Modeling for CFD
,
2nd edition
,
DCW Industries Inc.
,
La Cañada, CA
.
18.
Janke
,
E.
, and
Wolf
,
T.
, 2010, “
Aerothermal Research for Turbine Components - An Overview of the European AITEB-2 Project
,” ASME Paper No. GT2010-23511.
19.
Arnone
,
A.
,
Liou
,
M. S.
, and
Povinelli
,
L. A.
, 1992, “
Navier-Stokes Solution of Transonic Cascade Flow Using Non-Periodic C-Type Grids
,”
J. Propul. Power
,
8
(
2
), pp.
410
417
.
20.
Arnone
,
A.
, and
Pacciani
,
R.
, 1996, “
Rotor-Stator Interaction Analysis Using the Navier-Stokes Equations and a Multigrid Method
,”
ASME J. Turbomach.
,
118
(
4
), pp.
679
689
.
21.
Jameson
,
A.
, 1991, “
Time Dependent Calculations Using Multigrid With Applications to Unsteady Flows Past Airfoils and Wings
,” AIAA Paper No. 91-1596.
22.
Marconcini
,
M.
, and
Pacciani
,
R.
, 2003, “
Numerical Investigation of Wake-Shock Interactions and Clocking in a Transonic HP Turbine
,” ASME Paper No. 2003-GT-38401.
23.
Schmitt
,
S.
,
Eulitz
,
F.
,
Wallscheid
,
L.
,
Arnone
,
A.
, and
Marconcini
,
M.
, 2001, “
Evaluation of Unsteady CFD Methods by Their Application to a Transonic Propfan Stage
,” ASME Paper No. 2001-GT-310.
24.
Arnone
,
A.
,
Marconcini
,
M.
,
Pacciani
,
R.
,
Schipani
,
C.
, and
Spano
,
E.
, 2002, “
Numerical Investigation of Airfoil Clocking in a Three-Stage Low Pressure Turbine
,”
ASME J. Turbomach.
,
124
(
1
), pp.
61
68
.
25.
Lardeau
,
S.
,
Leschziner
,
M. A.
, and
Li
,
N.
, 2004, “
Modelling Bypass Transition With Low-Reynolds-Number Non-Linear Eddy-Viscosity Closure
,”
Flow, Turbul. and Combust.
,
73
, pp.
49
76
.
26.
Lardeau
,
S.
,
Li
,
N.
, and
Leschziner
,
M. A.
, 2007, “
Large Eddy Simulations of Transitional Boundary Layers at High Free-Stream Turbulence Intensity and Implications for RANS Modeling
,”
ASME J. Turbomach.
,
129
(
2
), pp.
311
317
.
27.
Wissink
,
J. G.
, and
Rodi
,
W.
, 2006, “
Direct Numerical Simulations of Transitional Flow in Turbomachinery
,”
ASME J. Turbomach.
,
128
(
4
), pp.
668
678
.
28.
Hatman
,
A.
, and
Wang
,
T.
, 1999, “
A Prediction Model for Separated-Flow Transition
,”
ASME J. Turbomach.
,
121
(
3
), pp.
594
602
.
29.
Walters
,
D. K.
, and
Leylek
,
J. H.
, 2004, “
A New Model for Boundary Layer Transition Using a Single-Point RANS Approach
,”
ASME J. Turbomach.
,
126
(
1
), pp.
193
202
.
30.
Pacciani
,
R.
, and
Spano
,
E.
, 2006, “
Numerical Investigation of the Effect of Roughness and Passing Wakes on LP Turbine Blades Performance
,” ASME Paper No. GT2006-90221.
31.
Dullenkopf
,
K.
, and
Mayle
,
R. E.
, 1995, “
An Account of Free-Stream Turbulence Length Scale on Laminar Heat Transfer
,”
ASME J. Turbomach.
,
117
, pp.
401
406
.
32.
Curtis
,
E. M.
,
Hodson
,
H. P.
,
Banieghbal
,
M. R.
,
Denton
,
J. D.
,
Howell
,
R. J.
, and
Harvey
,
N. W.
, 1997, “
Development of Blade Profiles for Low Pressure Turbine Applications
,”
ASME J. Turbomach.
,
119
(
3
), pp.
531
538
.
33.
Schulte
,
V.
, and
Hodson
,
H. P.
, 1998, “
Unsteady Wake-Induced Boundary Layer Transition in High Lift HP Turbines
,”
ASME J. Turbomach.
,
120
(
1
), pp.
28
35
.
34.
Stieger
,
R. D.
, and
Hodson
,
H. P.
, 2004, “
The Transition Mechanism of Highly Loaded Low-Pressure Turbine Blades
,”
ASME J. Turbomach.
,
126
(
4
), pp.
536
543
.
35.
Roberts
,
S. K.
, and
Yaras
,
M. I.
, 2005, “
Large-Eddy Simulation of Transition in a Separation Bubble
,”
J. Fluids Eng.
,
128
(
2
), pp.
232
238
.
You do not currently have access to this content.