In a gas turbine, the casing endwall moves relative to the blades. In this paper, numerical methods are first validated using experimental results for a stationary endwall. They are then used to study the effects of endwall motion on the aero-thermal performance of both winglet tips with and without tip film cooling at a tip gap of 1.9% C. The endwall motion imposes a tangential force on the flow. A scraping vortex is formed and the flow pattern within the tip gap changes significantly. The tip leakage mass flow rate that exits the tip gap from the suction side edge reduces by about 42% with endwall motion. Overall, the endwall motion reduces the tip leakage loss by 15%. The flow field downstream of the cascade also changes with endwall motion. With endwall motion, the changed flow pattern within the tip gap significantly changes the distribution of the Nusselt number on the winglet tip. For the winglet tip without tip film cooling, the Nusselt number and the heat load decrease with endwall motion. This is mainly due to the reduction in the tip leakage mass flow ratio, which reduces the leakage velocity over the tip. On the winglet tip with tip film cooling, the cooling effectiveness increases by 9% with endwall motion. Combined with the reduced Nusselt number, the heat flux on the winglet tip with tip film cooling reduces by 31% with endwall motion. The cooling effectiveness on the near tip region of the pressure side remains almost unchanged, however, the heat flux rate in this area reduces. This is because the reduced tip leakage mass flow ratio reduces the Nusselt number. With the moving endwall, the thermal performance of the suction side surface of the blade is affected by the scraping vortex. The effects of endwall motion should be considered during the design of the blade tip.

References

References
1.
Rains
D. A.
, 1954, “
Tip Clearance Flows in Axial Flow Compressors and Pumps
,” PhD thesis, California Institute of Technology, Pasadena, CA.
2.
Schabowski
,
Z.
, and
Hodson
,
H.
, 2007, “
The Reduction of Over Tip Leakage Loss in Unshrouded Axial Turbines Using Winglet and Squealers
,” ASME Paper No. GT -27623.
3.
Liu
,
H. C.
,
Booth
,
T. C.
, and
Tall
,
W. A.
, 1979, “
An Application of 3-D Viscous Flow Analysis to the Design of a Low-Aspect-Ratio Turbine
,” ASME Paper No. 79-GT-53.
4.
Harvey
,
N.
,
Newman
,
D.
, and
Haselbach
,
F.
, “
An Investigation into a Novel Turbine Rotor Winglet. Part 1: Design and Model Rig Test Results
,” ASME Paper No. GT2006-90456.
5.
Harvey
,
N. W.
, 2004, “
Turbine Blade Tip Design and Tip Clearance Treatment
,”
VKI Lecture Series
,
von Karman Institute for Fluid Dynamics
,
Belgium
.
6.
Zhou
,
C.
, and
Hodson
,
H.
, 2009, “
The Tip Leakage Flow of an Unshrouded High Pressure Turbine Blade With Tip Cooling
,” ASME Paper No. GT 2009-59637.
7.
Hofer
,
T.
, and
Arts
,
T.
, 2009, “
Aerodynamic Investigation of the Tip Leakage Flow for Blades With Different Tip Squealer Geometries at Transonic Conditions
,” ASME Paper No. GT2009-59909.
8.
Rao
,
N.
, and
Camci
,
C.
, 2004, “
Axial Flow Turbine Tip Desensitization by Injection From a Tip Trench. Part 1: Effect of Injection Mass Flow Rate
,” ASME Paper No. GT2004-53256.
9.
Bunker
,
R
, 2006, “
Axial Turbine Blade Tips: Function, Design, and Durability
,”
J. Propul. Power
,
22
(
2
), pp.
271
285
.
10.
Papa
,
M.
,
Glodstein
,
R. J.
, and
Gori
,
F.
, 2003, “
Effects of Tip Geometry and Tip Clearance on the Mass/Heat Transfer From a Large-Scale Gas Turbine Blade
,”
ASME J. Turbomach.
,
125
, pp.
90
96
.
11.
O’Dowd
,
D. O.
,
Zhang
,
Q.
,
He
,
L.
,
Oldfield
,
M.
,
Ligrani
,
P.
,
Cheong
,
B.
, and
Tibbott
,
I.
, 2010, “
Aero-Thermal Performance of a Winglet at Engine Representative Mach and Reynolds Numbers
,” ASME Paper No. GT2010-22794.
12.
Christophel
,
J. R.
,
Thole
,
K. A.
, and
Cunha
,
F. J.
, 2005, “
Cooling the Tip of a Turbine Blade Using Pressure Side Holes—Part 1: Adiabatic Effectiveness Measurements
,”
ASME J. Turbomach.
,
127
, pp.
270
277
.
13.
Newton
,
P. J.
,
Lock
,
G. D.
,
Krishnababu
,
S. K.
,
Hodson
,
H. P.
,
Dawes
,
W. N.
,
Hannis
,
J.
, and
Whitney
,
C.
, 2007, “
Aero-Thermal Investigation of Tip Leakage Flow in Axial Flow Turbines. Part III: Film Cooling
,” ASME Paper No. GT-2007-27368.
14.
Ahn
,
J.
,
Mhertras
,
S.
, and
Han
,
J. C.
, 2005, “
Film-Cooling Effectiveness on a Gas Turbine Blade Tip Using Pressure-Sensitive Paint
,”
ASME J. Heat Transfer
,
127
, pp.
521
530
.
15.
Yaras
,
M. I.
, and
Sjolander
,
S. A.
, 1992, “
Effects of Simulated Rotation on Tip Leakage in a Planar Cascade of Turbine Blades—Part I: Tip Gap Flow
,”
ASME J. Turbomach.
,
114
, pp.
652
659
.
16.
Graham
,
J. A. H.
, 1986, “
Investigation of a Tip Clearance Cascade in a Water Analogy Rig
,”
ASME J. Eng. Gas Turbines Power
,
108
, pp.
38
46
.
17.
Yaras
,
M. I.
,
Sjolander
,
S. A.
, and
Kind
,
R. J.
, 1992, “
Effects of Simulated Rotation on Tip Leakage in a Planar Cascade of Turbine Blades—Part II: Downstream Flow Field and Blade Loading
,”
ASME J. Turbomach.
,
114
, pp.
660
667
.
18.
Tallman
,
J.
, and
Lakshminarayana
,
B.
, 2001, “
Numerical Simulation of Tip Leakage Flows in Axial Flow Turbines, With Emphasis on Flow Physics—Part II: Effect of Outer Casing Relative Motion
,”
ASME J. Turbomach.
,
123
, pp.
324
333
.
19.
Palafox
,
P.
,
Oldfield
,
M. L. G.
,
LaGraff
,
J. E.
, and
Jones
,
T. V.
, 2005, “
PIV Maps of Tip Leakage and Secondary Flow Fields on a Low Speed Turbine Blade Cascade With Moving Endwall
,” ASME Paper No. GT2005-68189.
20.
Krishnababu
,
S. K.
,
Dawes
,
W. N.
,
Hodson
,
H. P.
,
Lock
,
G. D.
,
Hannis
,
J.
, and
Whitney
,
C.
, 2007, “
Aero-Thermal Investigation of Tip Leakage Flow in Axial Flow Turbines—Part II: Effect of Relative Casing Motion
,” ASME Paper No. GT-2007-27957.
21.
McCarter
,
A. A.
,
Xiao
,
X.
, and
Lakshminarayana
,
B.
, 2001, “
Tip Clearance Effects in a Turbine Rotor—Part 2: Velocity Field and Flow Physics
,”
ASME J. Turbomach.
,
123
, pp.
305
313
.
22.
Yang
,
D.
,
Yu
,
X.
, and
Feng
,
Z.
, 2010, “
Investigation of Leakage Flow and Heat Transfer in a Gas Turbine Blade Tip With Emphasis on the Effect of Rotation
,”
ASME J. Turbomach.
,
132
, p.
041010
.
23.
Srinivasan
,
V.
, and
Goldstein
,
R. J.
, 2003, “
Effect of Endwall Motion on Blade Tip Heat Transfer
,”
ASME J. Turbomach.
,
125
, pp.
267
273
.
24.
Rhee
,
D. H.
, and
Cho
,
H. H.
, 2006, “
Local Heat/Mass Transfer Characteristics on a Rotating Blade With Flat Tip in a Low-Speed Annular Cascade—Part 2: Tip and Shroud
,”
ASME J. Turbomach.
,
128
, pp.
110
119
.
25.
Palafox
,
P.
,
Oldfield
,
M. L. G.
,
Ireland
,
P. T.
,
Jones
T. V.
, and
LaGraff
,
J. E.
, 2006, “
Blade Tip Heat Transfer and Aerodynamics in a Large Scale Turbine Cascade With Moving Endwall
,” ASME Paper No. GT2006-90425.
26.
Friedrichs
,
S.
,
Hodson
,
H.
, and
Dawes
,
W. N.
, 1996, “
Distribution of Film-Cooling Effectiveness on a Turbine Endwall Measured Using the Ammonia and Diazo Technique
,”
ASME J. Turbomach.
,
118
, pp.
613
621
.
27.
Zhou
,
C.
, and
Hodson
,
H.
, 2009, “
Numerical Investigation of Thermal Performance of Unshrouded HP Turbine Blade Tips
,”
Int. J. Turbo Jet Engines
,
26
, pp.
277
284
.
28.
Greitzer
,
E. M.
,
Tan
,
C. S.
, and
Graf
,
M. B.
, 2004,
Internal Flow
,
Cambridge University Press
,
Cambridge, England
.
29.
Moore
,
J.
, and
Tilton
,
J. S.
, 1988, “
Tip Leakage Flow in a Linear Turbine Cascade
,”
ASME J. Turbomach.
,
110
, pp.
18
26
.
30.
Zhou
,
C.
,
Hodson
,
H.
,
Tibbott
,
I.
, and
Stokes
,
M.
, 2011, “
The Aero-Thermal Performance of a Cooled Winglet Tip in a High Speed Turbine Cascade
,” ASME Paper No. GT2011-46369.
You do not currently have access to this content.