Mass/heat transfer measurements are made using the naphthalene sublimation method in a square internal passage where one wall has a single dimple. Four types of dimple shapes are studied: square, triangular, circular, and teardrop. Sherwood numbers are obtained both inside and around the dimples. Measurements are made at a Reynolds number of 21,000. In addition, computations are performed for the same dimple geometries, and with the same flow conditions as in the experiments. Flow patterns for the four dimples are identified and heat transfer distributions for each dimple are obtained. The computational results are compared with the experimental data and show satisfactory agreement. Both the experimental and numerical results suggest that the teardrop dimple has the highest heat /mass transfer among the four dimple shapes studied.

References

References
1.
Han
,
J. C.
,
Zhang
,
Y. M.
, and
Lee
,
C. P.
, 1992, “
Influence of Surface Heat Flux Ratio on Heat Transfer Augmentation in Square Channels With Parallel, Crossed, and V-Shaped Angled Ribs
,”
ASME J. Turbomach.
,
114
, pp.
872
880
.
2.
Myrum
,
T.
,
Acharya
,
S.
,
Sinha
,
S.
, and
Qiu
,
X.
, 1996, “
Flow and Heat Transfer in a Ribbed Duct With Vortex Generators
,”
ASME J. Heat Transfer
,
118
, pp.
294
300
.
3.
Hibbs
,
R.
,
Acharya
,
S.
,
Chen
,
Y.
,
Nikitopoulos
,
D.
, and
Myrum
,
T.
, 1998, “
Heat Transfer in a Two-Pass Internally Ribbed Turbine Blade Coolant Channel With Cylindrical Vortex Generators
,”
ASME J. Turbomach.
,
120
, pp.
724
734
.
4.
Glezer
,
B.
,
Moon
,
H. K.
,
Kerrebrock
,
J.
,
Bons
,
J.
, and
Guenette
,
G.
, 1998, “
Heat Transfer in a Rotating Radial Channel With Swirling Internal Flow
,” ASME Paper No. 98-GT-214.
5.
Hedlund
,
C. R.
,
Ligrani
,
P. M.
,
Moon
,
H. K.
, and
Glezer
,
B.
, 1998, “
Heat Transfer and Flow Phenomena in a Swirl Chamber Simulating Turbine Blade Internal. Cooling
,” ASME Paper No. 98-GT-466.
6.
Schukin
,
A. V.
,
Koslov
,
A. P.
, and
Agachev
,
R. S.
, 1995, “
Study and Application of Hemispherical. Cavities for Surface Heat Transfer Augmentation
,” ASME Paper No. 95-GT-59.
7.
Chyu
,
M. K.
,
Yu
,
Y.
,
Ding
,
H.
,
Downs
,
J. P.
, and
Soechting
,
F.
, 1997, “
Concavity Enhanced Heat. Transfer in an Internal Cooling Passage
,” ASME Paper No. 97-GT-437.
8.
Lin
,
Y. L.
,
Shih
,
T. I. P.
, and
Chyu
,
M. K.
, 1999, “
Computations of Flow and Heat Transfer in a Channel With Rows of Hemisperical Concavities
,” ASME Paper No. 99-GT-263.
9.
Moon
,
H. K.
,
O’Connell
,
T.
, and
Glezer
,
B.
, 1999, “
Channel Height Effect on Heat Transfer and Friction in a Dimpled Passage
,” ASME Paper No. 99-GT-163.
10.
Mahmood
,
G. I.
,
Hill
,
M. L.
,
Nelson
,
D. L.
,
Ligrani
,
P. M.
,
Moon
,
H. K.
, and
Glezer
,
B.
, 2000, “
Local Heat Transfer and Flow Structure On and Above a Dimpled Surface in a Channel
,”
ASME J. Turbomach.
,
123
, pp.
115
123
.
11.
Zhou
,
F.
, and
Acharya
,
S.
, 2000, “
Mass/Heat Transfer in Dimpled Two-pass Coolant Passages With Rotation
,”
Ann. N.Y. Acad. Sci.
,
934
, pp.
424
431
.
12.
Mahmood
,
G. I.
,
Sabbagh
,
M. Z.
,
Ligrani
,
P. H.
,
Glezer
,
B.
, and
Moon
,
H. K.
, 2001, “
Heat Transfer in a Channel With Dimples and Protrusions on Opposite Walls
,”
J. Thermophys. Heat Transfer
,
15
, pp.
275
283
.
13.
Choudhury
,
D.
and
Karki
,
K. C.
, 1991, “
Calculation of Fully Developed Flow and Heat Transfer in Streamwise-Periodic Dimpled Channels
,”
J. Thermophys. Heat Transfer
,
5
, pp.
81
88
.
14.
Ligrani
,
P. M.
,
Harrison
,
J. L.
,
Mahmood
,
G. I.
, and
Hill
,
M. L.
, 2001, “
Flow Structure Due to Dimple Depressions on a Channel Surface
,”
Phys. Fluids
,
13
, pp.
3442
3451
.
15.
Griffith
,
T. S.
,
Al-Hadhrami
,
L.
, and
Han
,
J. C.
, 2003, “
Heat Transfer in Rotating Rectangular Cooling Channels (AR = 4) With Dimples
,”
ASME J. Turbomach.
,
125
, pp.
555
564
.
16.
Terekhov
,
V. I.
,
Kalinina
,
S. V.
, and
Mshvidobadze, Yu.
M.
, 1997, “
Heat Transfer Coefficient and Aerodynamic Resistance on a Surface With a Single Dimple
,”
J. Enhanced Heat Transfer
,
4
, pp.
131
145
.
17.
Isaev
,
S. A.
, and
Leont’ev
,
A. I.
, 2003, “
Numerical Simulation of Vortex Enhancement of Heat Transfer Under Conditions of Turbulent Flow Past a Spherical Dimple on the Wall of a Narrow Channel
,
High Temp.
,
41
, pp.
755
770
.
18.
Stearns
,
R. F.
,
Johnson
,
R. R.
,
Jackson
,
R. M.
, and
Larson
,
C. A.
, 1951,
Flow Measurement With Orifice Meters
,
Van Nostrand
,
Toronto
.
19.
Miller
,
R. W.
, 1989,
Flow Measurement Engineering Handbook
,
2nd ed.
,
McGraw-Hill
,
New York
.
20.
Sogin
,
H. H.
, and
Providence
,
R. I.
, 1958, “
Sublimation from Disks to Air Streams Flowing Normal to their Surfaces
,”
Trans. ASME
,
80
, pp.
61
69
.
21.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
,
75
, pp.
3
8
.
22.
Chen
,
Y.
, 1996, “
Mass Transfer in Stationary Ribbed Ducts With Vortex Generators
,” M.S. thesis, Dept. of Mechanical Engineering, Louisiana State University, Baton Rouge.
You do not currently have access to this content.