Detailed film cooling effectiveness distributions along a modeled turbine rotor blade under the combined effects of an upstream trailing edge unsteady wake with coolant ejection are presented using the pressure sensitive paint (PSP) mass transfer analogy method. The experiment is conducted in a low speed wind tunnel facility with a five blade linear cascade. The exit Reynolds number based on the axial chord is 370,000. Unsteady wakes and trailing edge coolant jets are produced by a spoked wheel-type wake generator with hollow rods equipped with several coolant ejections from holes. The coolant-to-mainstream density ratios for both the blade and trailing edge coolant ejection range from 1.5 to 2.0 for simulating realistic engine conditions. Blade blowing ratio studies are 0.5 and 1.0 on the suction surface and 1.0 and 2.0 on the pressure surface. The trailing edge jet blowing ratio and Strouhal numbers are 1.0 and 0.12, respectively. The results show that the unsteady wake reduces the overall film cooling effectiveness. However, the unsteady wake with trailing edge coolant ejection enhances the overall effectiveness. The results also show that the overall filming cooling effectiveness increases by using heavier coolant for trailing edge ejection and for blade surface film cooling.

References

References
1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
, 2001,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor & Francis
,
New York
.
2.
Han
,
J.
C.
and
Rallabandi
,
A. P.
, 2010, “
Turbine Blade Film Cooling Using PSP Technique
,”
Frontiers Heat Mass Transfer
,
1
(1), pp.
1
21
.
3.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
, 1974, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
(
5
), pp.
595
607
.
4.
Rallabandi
,
A. P.
,
Grizzle
,
J.
, and
Han
,
J. C.
, 2011, “
Effect of Upstream Step on Flat Plate Film Cooling Effectiveness Using PSP
,”
ASME J. Turbomach.
,
133
, p.
041024
.
5.
Goldstein
,
R.
J.
and
Jin
,
P.
, 2001, “
Film Cooling Downstream of a Row of Discrete Holes With Compound Angle
,”
ASME J. Turbomach.
,
123
(
2
), pp.
222
230
.
6.
Ekkad
,
S.
,
Zapata
,
D.
, and
Han
,
J. C.
, 1997, “
Film Effectiveness Over a Flat Surface With Air and CO2 Injection Through Compound Angle Holes Using a Transient Liquid Crystal Image Method
,”
ASME J. Turbomach.
,
119
, p.
587
.
7.
Choi
,
J.
,
Teng
,
S.
,
Han
,
J. C.
, and
Ladeinde
,
F.
, 2004, “
Effect of Free-Stream Turbulence on Turbine Blade Heat Transfer and Pressure Coefficients in Low Reynolds Number Flows
,”
Int. J. Heat Mass Transfer
,
47
, pp.
3441
3452
.
8.
Sinha
,
A. K.
,
Bogard
,
D.
, and
Crawford
,
M.
, 1991, “
Film Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach.
,
113
(
3
), pp.
442
449
.
9.
Goldstein
,
R. J.
Jin
,
P.
, 2001, “
Film Cooling Downstream of a Row of Discrete Holes With Compound Angle
,”
ASME J. Turbomach.
,
123
(
2
), pp.
222
230
.
10.
Wright
,
L. M.
,
Gao
,
Z.
,
Varvel
,
T. A.
, and
Han
,
J.-C.
, 2005, “
Assessment of Steady State PSP, TSP, and IR Measurement Techniques for Flat Plate Film Cooling
,”
Proceedings of the ASME Summer Heat Transfer Conference
.
11.
Ethridge
,
M. I.
,
Cutbirth
,
J. M.
, and
Bogard
,
D. G.
, 2001, “
Scaling of Performance for Varying Density Ratio Coolants on an Airfoil With Strong Curvature and Pressure Gradient Effects
,”
ASME J. Turbomach.
,
123
(
2
), pp.
231
237
.
12.
Jones
,
T.
, 1999, “
Theory for the Use of Foreign Gas in Simulating Film Cooling
,”
Int. J.Heat Fluid Flow
,
20
(
3
), pp.
349
354
.
13.
Mayle
,
R.
, 1991, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
,
113
, pp.
509
537
.
14.
R.
Mayle
, and
Dullenkopf
,
K.
, 1990, “
A Theory for Wake Induced Transition
,”
ASME J. Turbomach.
,
112
, p.
188
.
15.
Han
,
J. C.
,
Zhang
,
L.
, and
Ou
,
S.
, 1993, “
Influence of Unsteady Wake on Heat Transfer Coefficient from a Gas Turbine Blade
,”
ASME J. Heat Transfer
,
115
(
4
), pp.
904
911
.
16.
L.
Zhang
, and
Han
,
J. C.
, 1995, “
Combined Effect of Free Stream Turbulence and Unsteady Wake on Heat Transfer Coefficients from a Gas Turbine Blade
,”
ASME J. Heat Transfer
,
117
, p.
296
.
17.
Ou
,
S.
,
Han
,
J.
,
Mehendale
,
A.
, and
Lee
,
C.
, 1994, “
Unsteady Wake Over a Linear Turbine Blade Cascade With Air and CO2 Film Injection: Part I. Effect on Heat Transfer Coefficients
,”
ASME J. Turbomach.
,
116
, p.
721
.
18.
Guenette
,
G.
,
Epstein
,
A.
,
Giles
,
M.
,
Haimes
,
R.
, and
Norton
,
R.
, 1989, “
Fully Scaled Transonic Turbine Rotor Heat Transfer Measurements
,”
ASME J. Turbomach.
,
111
(
1
), pp.
1
7
.
19.
Doorly
,
D.
, and
Oldfield
,
M.
, 1985, “
Simulation of the Effects of Shock Wave Passing on a Turbine Rotor Blade
,”
ASME J. Eng. Gas Turbines Power
,
107
(
4
), pp.
998
1006
.
20.
Funazaki
,
K.
,
Yokota
,
M.
, and
Yamawaki
,
S.
, 1997, “
Effect of Periodic Wake Passing on Film Effectiveness of Discrete Cooling Holes Around the Leading Edge of a Blunt Body
,”
ASME J. Turbomach.
,
119
(
2
), pp.
292
301
.
21.
Stieger
,
R.
, and
Hodson
,
H.
, 2005, “
The Unsteady Development of a Turbulent Wake Through a Downstream Low Pressure Turbine Blade Passage
,”
ASME J. Turbomach.
,
127
, p.
388
.
22.
Bijak-Bartosik
,
E.
, and
Elsner
,
W.
, 2009, “
Investigation of Wake Transport in a Turbine Blade Channel and its Effect on the Boundary Layer Development
,”
ASME International Gas Turbine Conference and Exhibit
,
Orlando
.
23.
Mehendale
,
A.
,
Han
,
J. C.
,
Ou
,
S.
, and
Lee
,
C.
, 1994, “
Unsteady Wake Over a Linear Turbine Blade Cascade with Air and CO2 Film Injection: Part II. Effect on Film Effectiveness and Heat Transfer Distributions
,”
ASME J. Turbomach.
,
116
, p.
730
.
24.
Du
,
H.
,
Han
,
J. C.
, and
Ekkad
,
S.
, 1998, “
Effect of Unsteady Wake on Detailed Heat Transfer Coefficient and Film Effectiveness Distributions for a Gas Turbine Blade
,”
ASME J. Turbomach.
,
120
, pp.
808
817
.
25.
Rallabandi
,
A. P.
,
Li
,
S. J.
, and
Han
,
J. C.
, 2010, “
Unsteady Wake and Coolant Density Effects on Turbine Blade Film Cooling Using PSP Technique
,”
Proceedings of the International Heat Transfer Conference
, August 8–13, 2010,
Washington, DC
, Paper No. IHTC14-22911.
26.
Teng
,
S.
,
Sohn
,
D.
, and
Han
,
J.C.
, 2000, “
Unsteady Wake Effect on Film Temperature and Effectiveness Distributions for a Gas Turbine Blade
,”
ASME J. Turbomach.
,
122
, p.
340
.
27.
Heidmann
,
J.
,
Lucci
,
B.
, and
Reshotko
,
E.
, 2001, “
An Experimental Study of the Effect of Wake Passing on Turbine Blade Film Cooling
,”
ASME J. Turbomach.
,
123
, p.
214
.
28.
Du
,
H.
,
Ekkad
,
S.
, and
Han
,
J.C.
, 1997, “
Effect of Unsteady Wake With Trailing Edge Coolant Ejection on Detailed Heat Transfer Coefficient Distributions for a Gas Turbine Blade
,”
ASME J. Heat Transfer
,
119
, p.
242
.
29.
Du
,
H.
,
Ekkad
,
S.
, and
Han
,
J.C.
, 1999, “
Effect of Unsteady Wake With Trailing Edge Coolant Ejection on Film Cooling Performance for a Gas Turbine Blade
,”
ASME J. Heat Transfer
,
121
, p.
448
.
30.
W.
Nicoll
, and
Whitelaw
,
J.
, 1967, “
The Effectiveness of the Uniform Density, Two-Dimensional Wall Jet (Two-Dimensional Wall Jet Effectiveness Measurements and Calculation Procedures for Injection Conditions)
,”
Int. J. Heat Mass Transfer
,
10
, pp.
623
639
.
31.
Gao
,
Z.
,
Narzary
,
D.
, and
Han
,
J. C.
, 2009, “
Film-Cooling on a Gas Turbine Blade Pressure Side or Suction Side With Compound Angle Shaped Holes
,”
ASME J. Turbomach.
,
131
, p.
011019
.
32.
Narzary
,
D. P.
,
Liu
,
K.
, and
Han
,
J. C.
, 2009, “
Influence of Coolant Density on Turbine Blade Platform Film Cooling
,” ASME Paper No. GT2009-59342.
33.
Narzary
,
D. P.
,
Liu
,
K.
,
Rallabandi
,
A. P.
, and
Han
,
J. C.
, 2010, “
Influence of Coolant Density on Turbine Blade Film-Cooling Using Pressure Sensitive Paint Technique
,” ASME Paper No. GT2010-22781.
34.
Charbonnier
,
D.
,
Ott
,
P.
,
Jonsson
,
M.
,
Cottier
,
F.
, and
Kobbe
,
T.
, 2009, “
Experimental and Numerical Study of the Thermal Performance of a Film Cooled Turbine Platform
,”
Proceedings of Turbo Expo
2009, Paper No. GT2009-60306.
35.
Kline
,
S.
and
McClintock
,
F.
, 1953, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
,
75
(
1
), pp.
3
8
.
You do not currently have access to this content.