Swirling flows are now widely being used in modern gas turbine combustors to improve the combustion characteristics, flame stability, and reduce emissions. Residual swirl at the combustor exit will affect the performance of the downstream high-pressure (HP) turbine. In order to perform a detailed investigation of the effect of swirl on a full-scale HP turbine stage, a combustor swirl simulator has been designed and commissioned in the Oxford Turbine Research Facility (OTRF), previously located at QinetiQ, Farnborough UK, as the Turbine Test Facility (TTF). The swirl simulator is capable of generating engine-representative combustor exit swirl distributions at the turbine inlet, with yaw and pitch angles of up to ± 40 deg. The turbine test facility is an engine scale, short duration, rotating transonic turbine facility, which simulates the engine representative M, Re, Tu, nondimensional speed, and gas-to-wall temperature ratio at the turbine inlet. The test turbine is a highly loaded unshrouded design (the MT1 turbine). This paper presents time-averaged experimental heat transfer measurements performed on the rotor casing surface, and on the rotor blade surface at 10%, 50%, and 90% span. Time-averaged rotor casing static pressure measurements are also presented. Experimental measurements with and without inlet swirl are compared. The measurements are discussed with the aid of three-dimensional steady and unsteady CFD simulations of the turbine stage. Numerical simulations were conducted using the Rolls-Royce in-house code HYDRA, with and without inlet swirl.

References

References
1.
Qureshi
,
I.
,
Smith
,
A. D.
, and
Povey
,
T.
, 2011, “
HP Vane Aerodynamics and Heat Transfer in the Presence of Aggressive Swirl
,”
Proceedings of the ASME IGTI Turbo Expo 2011
, Paper No. 2011-GT-46037.
2.
Denton
,
J. D.
, 1993, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,.
115
, pp.
621
656
.
3.
Guenette
,
G. R.
,
Epstein
,
A. H.
,
Norton
,
R. J. G.
, and
Yuzhang
,
C.
1985, “
Time-Resolved Measurements of a Turbine Rotor Stationary Tip Casing Pressure and Heat Transfer Field
,” AIAA Paper No. 85-1220.
4.
Metzger
,
D. E.
,
Dunn
,
M. G.
, and
Hah
,
C.
, 1991, “
Turbine Tip and Shroud Heat Transfer
,”
ASME. J. Turbomach.
,
113
, pp.
502
507
.
5.
Polanka
,
M. D.
,
Hoying
,
D. A.
,
Meininger
,
M.
, and
MacArthur
C. D.
, 2003, “
Turbine Tip and Shroud Heat Transfer and Loading – Part A: Parameter Effects Including Reynolds Number, Pressure Ratio, and Gas-to-Metal Temperature Ratio
,”
ASME J. Turbomach.
,
125
, pp.
97
106
.
6.
Chana
,
K. S.
and
Jones
,
T. V.
, 2003, “
An Investigation on Turbine Tip and Shroud Heat Transfer
,”
ASME J. Turbomach.
,
125
, pp.
513
520
.
7.
Thorpe
,
S. J.
,
Yoshino
,
S.
,
Ainsworth
,
R. W.
, and
Harvey
,
N. W.
, 2004, “
An Investigation of the Heat Transfer and Static Pressure on the Over-Tip Casing Wall of an Axial Turbine Operating at Engine Representative Flow Conditions—Part I: Time-Mean Results
,”
Int. J. Heat Fluid Flow
,
25
, pp.
933
944
.
8.
Qureshi
,
I.
,
Smith
,
A. D.
,
Chana
,
K. S.
, and
Povey
,
T.
, 2012, “
Effect of Temperature Nonuniformity on Heat Transfer in an Unshrouded Transonic HP Turbine: An Experimental and Computational Investigation
,”
ASME J Turbomach.
,
134
(
1
),
p.
011005
.
9.
Guenette
,
G. R.
,
Epstein
,
A. H.
,
Giles
,
M. B.
,
Haimes
,
R.
, and
Norton
,
R. J. G.
, 1988, “
Fully Scaled Transonic Turbine Rotor Heat Transfer Measurements
,”
ASME J. Turbomach.
,
111
, pp.
1
7
.
10.
Hilditch
,
M. A.
, 1989, “
Unsteady Heat Transfer Measurements in a Rotating Gas Turbine Stage
,” Ph.D. thesis, Department of Engineering Science, University of Oxford.
11.
Moss
,
R. W.
,
Sheldrake
,
C. D.
,
Ainsworth
,
R. W.
,
Smith
,
A. D.
, and
Dancer
,
S. N.
, 1995, “
Unsteady Pressure and Heat Transfer Measurements on a Rotating Blade Surface in a Transient Flow Facility
,”
85th Propulsion and Energetic Panel Symposium on Loss Mechanism and Unsteady Flows in Turbomachines
,
Derby
,
UK
, AGARD Conf. Proc. No. 571.
12.
Didier
,
F.
,
Denos
,
M.
, and
Arts
,
T.
, 2002, “
Unsteady Rotor Heat Transfer in a Transonic Turbine Stage
,”
Trans. ASME
,
124
, pp.
614
622
.
13.
Allan
,
W. D.
,
Ainsworth
,
R.
, and
Thorpe
,
S.
, 2008, “
Unsteady Heat Transfer Measurements from Transonic Turbine Blades at Engine Representative Conditions in a Transient Facility
,”
ASME J. Eng. Gas Turbines Power
,
130
, p.
041901
.
14.
Haldeman
,
C. W.
,
Mathison
,
R. M.
,
Dunn
,
M. G.
,
Southworth
,
S. A.
,
Harral
,
J. W.
, and
Heltland
,
G.
2008, “
Aerodynamic and Heat Flux Measurements in a Single-Stage Fully Cooled Turbine—Part II: Experimental Results
,”
ASME. J. Turbomach.
,
130
(
2
), pp.
021016
-1–
11
.
15.
Gupta
,
A. K.
,
Lewis
,
M. J.
, and
Daurer
,
M.
, 2001, “
Swirl Effects on Combustion Characteristics of Premixed Flames
,”
J. Eng. Gas Turbines Power
,
123
, pp.
619
626
.
16.
Li
,
G.
and
Gutmark
,
E. J.
, 2004, “
Effects of Swirler Configurations on Flow Structures and Combustion Characteristics
,” ASME Paper No. GT2004-53674.
17.
Huang
,
Y.
and
Yang
,
V.
, 2005, “
Effects of Swirl on Combustion Dynamics in a Lean-Premixed Swirl-Stabilized Combustor
,”
Proc. Combust. Inst.
,
30
, pp.
1775
1782
.
18.
Jouini
,
D. B. M.
,
Sjolander
,
S. A.
, and
Moustapha
,
S. H.
, 2001, “
Aerodynamic Performance of a Transonic Turbine Cascade at Off-Design Conditions
,”
ASME J. Turbomach.
,
123
, pp.
510
518
.
19.
Corriveau
,
D.
and
Sjolander
,
S. A.
, 2004, “
Influence of Loading Distribution on the Performance of Transonic High Pressure Turbine Blades
,”
ASME J. Turbomach.
,
126
, pp.
288
296
.
20.
Corriveau
,
D.
, and
Sjolander
,
S. A.
, 2007, “
Influence of Loading Distribution on the Off-Design Performance of High Pressure Turbine Blades
,”
ASME J. Turbomach.
,
129
, pp.
563
571
.
21.
Weiss
,
A. P.
, and
Fottner
,
L.
, 1995, “
The Influence of Load Distribution on Secondary Flow in Straight Turbine Cascades
,”
ASME J. Turbomach.
,
117
, pp.
133
141
.
22.
Hancock
,
P. E.
, and
Bradshaw
,
P.
, 1983, “
The Effect of Freestream Turbulence on Turbulent Boundary Layers
,”
ASME J. Fluids Eng.
,
105
, pp.
284
289
.
23.
Blair
,
M. F.
, 1983, “
Influence of Free-Stream Turbulence on Turbulent Boundary Layer Heat Transfer and Men Profile Development—Part II: Analysis of Results
,”
ASME J. Heat Transfer
,
105
, pp.
41
47
.
24.
Krishnamoorthy
,
V.
and
Sukhatme
,
S. P.
, 1989, “
The Effect of Freestream Turbulence on Gas Turbine Blade Heat Transfer
,”
ASME J. Turbomach.
,
111
, pp.
497
501
.
25.
Jones
,
T. V.
,
Schultz
,
D. L.
, and
Hendley
,
A. D.
1973, “
On the Flow in an Isentropic Light Piston Tunnel
,” MoD (Proc Exec), Aeronautical Research Council R&M No. 3731.
26.
Goodisman
,
M. I.
,
Oldfield
,
M. L. G.
,
Kingcombe
,
R. C.
,
Jones
,
T. V.
,
Ainsworth
,
R. W.
, and
Brooks
,
A. J.
, 1992, “
An Axial Turbobrake
,”
ASME J. Turbomach.
,
114
(
2
), pp.
419
425
.
27.
Hilditch
,
M. A.
,
Fowler
,
A.
,
Jones
,
T. V.
,
Chana
,
K. S.
,
Oldfield
,
M. L. G.
,
Ainsworth
,
R. W.
,
Andrew
,
S. J.
, and
Smith
,
G. C.
,1994, “
Installation of a Turbine Stage in the Pyestock Isentropic Light Piston Facility
,” ASME Paper No. 94-GT-277.
28.
Povey
,
T.
,
Chana
,
K. S.
,
Jones
,
T. V.
, and
Oldfield
,
M. L. G.
, 2003, “
The Design and Performance of a Transonic Flow Deswirling System: An Application of Current CFD Design Techniques Tested Against Model and Full-Scale Experiments, Advances of CFD in Fluid Machinery Design
,”
IMechE Professional Engineering Publishing Limited, UK.
, pp.
65
94
.
29.
29 Qureshi,
I.
and
Povey
,
T.
, 2011, “
A Combustor-Representative Swirl Simulator for a Transonic Turbine Research Facility
,”
Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng.
,
225
(
7
), pp.
737
748
.
30.
Oldfield
,
M. L. G.
,
Burd
,
H. J.
, and
Doe
,
N. G.
, 1984, “
Design of Wide-Bandwidth Analogue Circuits for Heat Transfer Instrumentation in Transient Tunnels
,”
Heat and Mass Transfer in Rotating Machinery
,
Hemisphere
,
Washington, D.C.
, p.
233
258
.
31.
Oldfield
,
M. L. G.
,
Jones
,
T. V.
, and
Schultz
,
D. L.
1978, “
On-Line Computer for Transient Turbine Cascade Instrumentation
,”
IEEE Trans. Aerosp. Electron. Syst. Mag.
,
AES-14
(
5
), pp.
738
749
.
32.
Doorly
,
J. E.
, and
Oldfield
,
M. L. G.
, 1987, “
The Theory of Advanced Multi-Layer Thin Film Heat Transfer Gauges
,”
Int. J. Heat Mass Transfer
,
30
(
6
),, pp.
1159
1168
.
33.
Moss
,
R. W.
, and
Ainsworth
,
R. W.
, 1993, “
A Transient Measurement Technique for Heat Transfer to Metallic Aerofoils
,”
Proceedings of Eurotherm 32 Seminar
, pp.
63
73
.
34.
Povey
,
T.
, 2003, “
On Advances in Annular Cascade Techniques
,” Ph.D. thesis, Department of Engineering Science, University of Oxford, Oxford, UK.
35.
Shahpar
,
S.
, and
Lapworth
,
L.
, 2003, “
Parametric Design and Rapid Meshing Systems for Turbomachinery Optimisation
,” ASME Paper No. GT2003-38698.
36.
Moinier
,
P.
, and
Giles
,
M. B.
, 1998, “
Preconditioned Euler and Navier-Stokes Calculations on Unstructured Grids
,”
Proceedings of the. 6th ICFD Conference on Numerical Methods for Fluid Dynamics
,
Oxford, UK
.
37.
Moinier
,
P.
,
Mueller
,
J.-D.
, and
Giles
,
M. B.
, 2002, “
Edgebased Multigrid and Preconditioning for Hybrid Grids
,”
AIAA J.
,
40
(
10
), pp.
1954
1960
.
38.
Martinelli
,
L.
, 1987, “
Calculations of Viscous Flows with a Multigrid Method
,” Ph.D. thesis, Department of Mechanical and Aerospace Engineering, Princeton University, USA.
39.
Mueller
,
J.-D.
, and
Giles
,
M. B.
, 1998, “
Edge-Based Multigrid Schemes for Hybrid Grids
,”
Proc. 6th ICFD Conference on Numerical Methods for Fluid Dynamics
,
Oxford, UK
.
40.
Chana
,
K. S.
, 1992, “
Heat Transfer and Aerodynamics of a High Rim Speed Turbine Nozzle Guide Vane with Profile End Walls
,” ASME Paper No. 92-GT-243.
41.
Beard
,
P. F.
, 2010, “
On Transient Turbine Efficiency Measurements with Engine Representative Inlet Flows
,” Ph.D. thesis, Department of Engineering Science, University of Oxford, Oxford, UK.
You do not currently have access to this content.