A two-stage turbine is tested in a cooperation between the Institute of Aircraft Propulsion Systems (ILA) and MTU Aero Engines GmbH (MTU). The experimental results taken in the Altitude Test Facility (ATF) are used to assess the impact of cavity flow and leakage on vortex structures. The analysis focuses on a range of small Reynolds numbers, from as low as 35,000 up to 88,000. The five hole probe area traverse data is compared to steady multistage CFD predictions behind the second vane. The numerical model compares computations without and with cavities modeled. The simulation with cavities is superior to the approach without cavities. The vortex induced blockage is found to be inversely proportional to the Reynolds number. The circulation of the vortices is dependent on the Reynolds number showing a reversing trend to the smallest Reynolds numbers. The steady numerical model as of yet is unsuitable to predict these trends. A first unsteady simulation suggests major improvements.

References

References
1.
Hodson
,
H. P.
, and
Howell
,
R. J.
, 2005, “
Bladerow Interactions, Transition, and High-Lift Aerofoils in Low-Pressure Turbines
,”
Annu. Rev. Fluid Mech.
,
37
, pp.
71
98
.
2.
Curtis
,
E. M.
,
Hodson
,
H. P.
,
Banieghbal
,
M. R.
,
Denton
,
J. D.
,
Howell
,
R. J.
, and
Harvey
,
N. W.
, 1997, “
Development of Blade Profiles for Low-Pressure Turbine Applications
,”
J. Turbomach.
,
119
, pp.
531
538
.
3.
Schulte
,
V.
, and
Hodson
,
H. P.
, 1998, “
Unsteady Wake-Induced Boundary Layer Transition in High Lift LP Turbines
,”
J. Turbomach.
,
120
, pp.
28
35
.
4.
Mahallati
,
A.
, and
Sjolander
,
S. A.
, 2007, “
Aerodynamics of a Low-Pressure Turbine Airfoil at Low-Reynolds Numbers Part 2: Blade-Wake Interaction
,”
Proceedings of ASME
, Paper No. GT2007–
27348
.
5.
Volino
,
R. J.
, 2010, “
Separated Flow Measurements on a Highly Loaded Low-Pressure Turbine Airfoil
,”
J. Turbomach.
,
132
, p.
011007
.
6.
Gier
,
J.
, and
Ardey
,
S.
, 2001, “
On the Impact of Blade Count Reduction on Aerodynamic Performance and Loss Generation in a Three-Stage LP Turbine
,”
Proceedings of ASME
, Paper No. 2001-GT-0197.
7.
Haselbach
,
F.
,
Schiffer
,
H.-P.
,
Horsman
,
M.
,
Dressen
,
S.
,
Harvey
,
N.
, and
Read
,
S.
, 2002, “
The Application of Ultra High Lift Blading in the BR715 LP Turbine
,”
J. Turbomach.
,
124
, pp.
45
51
.
8.
Howell
,
R. J.
,
Hodson
,
H. P.
,
Schulte
,
V.
,
Stieger
,
R. D.
,
Schiffer
,
H.-P.
,
Haselbach
,
F.
, and
Harvey
,
N. W.
, 2002, “
Boundary Layer Development in the BR710 and BR715 LP Turbines - The Implementation of High-Lift and Ultra-High-Lift Concepts
,”
J. Turbomach.
,
124
, pp.
385
392
.
9.
D’Ovidio
,
A.
,
Littlewood
,
L.
,
Congiu
,
F.
,
Ruffino
,
P.
, and
Mokulys
,
T.
, 2008, “
Comparison Between Hot Wire and 5-Hole Pressure Probe Traverse Data in a Variable Density Two-Stages Air Turbine
,”
Proceedings of ASME
, Paper No. GT2008–
50753
.
10.
Gier
,
J.
,
Franke
,
M.
,
Hübner
,
N.
, and
Schröder
,
T.
, 2008, “
Designing LP Turbines for Optimized Airfoil Lift
,”
Proceedings of ASME
, Paper No. GT2008–
51101
.
11.
Kürner
,
M.
,
Schneider
,
C.
,
Rose
,
M. G.
,
Staudacher
,
S.
, and
Gier
,
J.
, 2010, “
LP Turbine Reynolds Lapse Phenomena: Time Averaged Area Traverse and Multistage CFD
,”
Proceedings of ASME
, Paper No. GT2010–
23114
.
12.
Schinko
,
N.
,
Kürner
,
M.
,
Staudacher
,
S.
,
Rose
,
M. G.
,
Gier
,
J.
,
Raab
,
I.
, and
Lippl
,
F.
, 2009, “
Das ATRD-Projekt - Ein Beispiel für die Zusammenarbeit von Industrie und Universität zur Förderung der Grundlagenforschung
,” DGLR Congress, Aachen, Paper No. DLRK2009–
121156
.
13.
Saravanamuttoo
,
H. I. H.
, 1990, “
Recommended Practices for Measurement of Gas Path Pressures and Temperatures for Performance Assessment of Aircraft Turbine Engines and Components
,” AGARD Advisory Report No. 245.
14.
Cumpsty
,
N. A.
, and
Horlock
,
J. H.
, 2006, “
Averaging Nonuniform Flow for a Purpose
,”
J. Turbomach.
,
128
, pp.
120
129
.
15.
Franke
,
M.
,
Kügeler
,
E.
, and
Nürnberger
,
D.
, 2005, “
Das DLR-Verfahren TRACE: Moderne Simulationstechniken für Turbomaschinenstr ömungen
,” Paper No. DGLR-2005–211.
16.
Eulitz
,
F.
,
Engel
,
K.
, and
Nürnberger
,
D.
,
Schmitt
,
S.
, and
Yamamoto
,
K.
, 1998, “
On Recent Advances of a Parallel Time-Accurate Navier Stokes Solver for Unsteady Turbomachinery Flow
,”
4th ECOMAS Proceedings in Computational Fluid Dynamics,
K. D.
Papailion
,
D.
Tsahalis
,
J.
Periaux
,
C.
Hirsch
, and
M.
Pandolfi
, eds., Vol.
1
,
J. Wiley & Sons.
17.
Roe
,
P. L.
, 1997, “
Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes
,”
J. Comput. Phys.
,
135
, pp.
250
258
.
18.
Engel
,
K.
, 1997, “
Numerische Simulation der instationren Strömung in Turbomaschinenkomponenten
,” Ph.D. Dissertation, Universit ät-GH Essen, Germany.
19.
Röber
,
T.
,
Kozulovic
,
D.
,
Kügeler
,
E.
, and
Nurnberger
,
D.
, 2006, “
Appropriate Turbulence Modelling for Turbomachinery Flows Using a Two-Equation Turbulence Model
,”
New Results in Numerical and Experimental Fluid Mechanics V
,
H. J.
Rath
, ed.,
Springer
,
New York
, pp.
446
454
.
20.
Kozulovic
,
D.
, and
Röber
,
T.
, 2006, “
Quasi-Unsteady Transition Modelling of Periodic Wakes
,”
Turbulence, Heat and Mass Transfer
,
Begell House
,
New York
, Vol.
5
, pp.
213
216
.
21.
Yang
,
H.
,
Nürnberger
,
D.
,
Nicke
,
E.
, and
Weber
,
A.
, 2003, “
Numerical Investigation of Casing Treatment Mechanisms with a Conservative Mixed-Cell Approach
,”
Proceedings of ASME
, Paper No. 2003-GT-38483.
22.
Nürnberger
,
D.
,
Eulitz
,
F.
,
Schmitt
,
S.
, and
Zachcial
,
A
, 2001, “
Recent Progress in the Numerical Simulation of Unsteady Viscous Multistage Turbomachinery Flow
,” ISABE Paper No. 2001–1081.
23.
Yang
,
H.
,
Nürnberger
,
D.
, and
Weber
,
A.
, 2002, “
A Conservative Zonal Approach With Applications to Unsteady Turbomachinery Flows
,” Paper No. DGLR-2002–073.
24.
Denton
,
J. D.
, 1993, “
Loss Mechanisms in Turbomachines
,”
J. Turbomach.
,
115
, pp.
621
656
.
25.
Schlichting
,
H.
, and
Gersten
,
K.
, 2006,
Grenzschicht-Theorie
,
Springer
,
Berlin
.
26.
Dixon
,
S.
, 1978,
Fluid Mechanics, Thermodynamics of Turbomachinery
,
3rd ed.
,
Butterworth-Heinemann
,
London
.
27.
Boudet
,
J.
,
Hills
,
N. J.
, and
Chew
,
J. W.
, 2006, “
Numerical Simulation of the Flow Interaction Between Turbine Main Annulus and Disc Cavities
,”
Proceedings of ASME
, Paper No. GT2006–
90307
.
You do not currently have access to this content.