Experimental measurements of the mean and turbulent flow field were preformed downstream of a low-speed linear turbine cascade. The influence of turbulence on the production of secondary losses is examined. Steady pressure measurements were collected using a seven-hole pressure probe and the turbulent flow quantities were measured using a rotatable x-type hotwire probe. Each probe was traversed downstream of the cascade along planes positioned at three axial locations: 100%, 120%, and 140% of the axial chord (Cx) downstream of the leading edge. The seven-hole pressure probe was used to determine the local total and static pressure as well as the three mean velocity components. The rotatable x-type hotwire probe, in addition to the mean velocity components, provided the local Reynolds stresses and the turbulent kinetic energy. The axial development of the secondary losses is examined in relation to the rate at which mean kinetic energy is transferred to turbulent kinetic energy. In general, losses are generated as a result of the mean flow dissipating kinetic energy through the action of viscosity. The production of turbulence can be considered a preliminary step in this process. The measured total pressure contours from the three axial locations (1.00, 1.20, and 1.40Cx) demonstrate the development of the secondary losses. The peak loss core in each plane consists mainly of low momentum fluid that originates from the inlet endwall boundary layer. There are, however, additional losses generated as the flow mixes with downstream distance. These losses have been found to relate to the turbulent Reynolds stresses. An examination of the turbulent deformation work term demonstrates a mechanism of loss generation in the secondary flow region. The importance of the Reynolds shear stresses to this process is explored in detail.

References

References
1.
Hodson
,
H. P.
,
Huntsman
,
I.
, and
Steele
,
A. B.
, 1994, “
Investigation of Boundary Layer Development in a Multistage LP Turbine
,”
ASME J. Turbomach.
,
116
, pp.
375
383
.
2.
Denton
,
J. D.
, 1993, “
The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
, pp.
621
656
.
3.
Gregory-Smith
,
D. G.
, and
Cleak
,
J. G. E.
, 1992, “
Secondary Flow Measurements in a Turbine Cascade With High Inlet Turbulence
,”
ASME J. Turbomach.
,
114
, pp.
173
183
.
4.
Sjolander
,
S. A.
, 1975, “
The Endwall Boundary Layer in an Annular Cascade of Turbine Nozzle Guide Vanes
,” M. Eng. Thesis, Carleton University, Ottawa.
5.
Langston
,
L. S.
,
Nice
,
M. L.
, and
Hooper
,
R. M.
, 1976, “
Three-Dimensional Flow Within a Turbine Cascade Passage
,” ASME Paper No. 76-GT-50.
6.
Sieverding
,
C. H.
, 1985, “
Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages
,”
ASME J. Eng. Gas Turbines Power
,
107
, pp.
248
157
.
7.
Hodson
,
H. P.
, and
Dominy
,
R. G.
, 1987, “
Three-Dimensional Flow in a Low-Pressure Turbine Cascade at Its Design Condition
,”
ASME J. Turbomach.
,
109
, pp.
177
185
.
8.
Sharma
,
O. P.
, and
Butler
,
T. L.
, 1987, “
Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades
,”
ASME J. Turbomach.
,
109
, pp.
229
236
.
9.
Benner
,
M. W.
, 2003, “
The Effects of Leading Edge Geometry on Profile and Secondary Losses in Turbine Cascades
,” Ph.D. thesis, Carleton University, Ottawa, Canada.
10.
Moore
,
J.
, and
Adhye
,
R. Y.
, 1985, “
Secondary Flows and Losses Downstream of a Turbine Cascade
,”
ASME J. Eng. Gas Turbines Power
,
107
, pp.
961
968
.
11.
Gregory-Smith
,
D. G.
,
Graves
,
C. P.
, and
Walsh
,
J. A.
, 1988, “
Growth of Secondary Losses and Vorticity in an Axial Turbine Cascade
,”
ASME J. Turbomach.
,
110
, pp.
1
8
.
12.
Harrison
,
S.
, 1990, “
Secondary Loss Generation in a Linear Cascade of High-Turning Turbine Blades
,”
ASME J. Turbomach.
,
112
, pp.
618
624
.
13.
Harvey
,
N. W.
,
Rose
,
M. G.
,
Taylor
,
M. D.
,
Shahpar
,
S.
,
Hartland
,
J.
, and
Gregory-Smith
,
D. G.
, 2000, “
Nonaxisymmetric Turbine End Wall Design: Part I—Three-Dimensional Linear Design System
,”
ASME J. Turbomach.
,
122
, pp.
278
285
.
14.
Hartland
,
J. C.
,
Gregory-Smith
,
D. G.
,
Harvey
,
N. W.
, and
Rose
,
M. G.
, 2000, “
Nonaxisymmetric Turbine End Wall Design: Part II—Experimental Validation
,”
ASME J. Turbomach.
,
122
, pp.
286
293
.
15.
Yan
,
J.
,
Gregory-Smith
,
D.
, and
Walker
,
P. J.
, 1999, “
Secondary Flow Reduction in a Nozzle Guide Vane by Non-Axisymmetric End-Wall Contouring
,” ASME Paper No. 99-GT-339.
16.
Praisner
,
T. J.
,
Allen-Bradley
,
E.
,
Grover
,
E. A.
,
Knezevici
,
D. C.
, and
Sjolander
,
S. A.
, 2007, “
Application of Non-Axisymmetric Endwall Contouring to Conventional and High-Lift Turbine Airfoils
,” ASME Paper No. GT2007–27579.
17.
Ingram
,
G.
,
Gregory-Smith
,
D.
, and
Harvey
,
N.
, 2005, “
Investigation of a Novel Secondary Flow Feature in a Turbine Cascade with End Wall Profiling
,”
ASME J. Turbomach.
,
127
, pp.
209
214
.
18.
Gregory-Smith
,
D. G.
,
Walsh
,
J. A.
,
Graves
,
C. P.
, and
Fulton
,
K. P.
, 1988, “
Turbulence Measurements and Secondary Flows in a Turbine Rotor Cascade
,”
ASME J. Turbomach.
,
110
, pp.
479
485
.
19.
Moore
,
J.
,
Shaffer
,
D. M.
, and
Moore
,
J. G.
, 1987, “
Reynolds Stresses and Dissipation Mechanisms Downstream of a Turbine Cascade
,”
ASME J. Turbomach.
,
109
, pp.
258
267
.
20.
Perdichizzi
,
A.
,
Ubaldi
,
M.
, and
Zunino
,
P.
, 1992, “
Reynolds Stress Distribution Downstream of a Turbine Cascade
,”
Exp. Thermal Fluid Sci.
,
5
, pp.
338
350
.
21.
Gustafson
,
R.
,
Mahmood
,
G.
, and
Acharya
,
S.
, 2007, “
Aerodynamic Measurements in a Linear Turbine Blade Passage With Three-Dimensional Endwall Contouring
,” ASME Paper No. GT2007–28073.
22.
Zoric
,
T.
,
Popovic
,
I.
,
Sjolander
,
S. A.
,
Praisner
,
T.
, and
Grover
,
E.
, 2007, “
Comparative Investigation of Three Highly Loaded LP Turbine Airfoils: Part I—Measured Profile and Secondary Losses at Design Incidence
,” ASME Paper No. GT2007–27537.
23.
Zoric
,
T.
,
Popovic
,
I.
,
Sjolander
,
S. A.
,
Praisner
,
T.
, and
Grover
,
E.
, 2007, “
Comparative Investigation of Three Highly Loaded LP Turbine Airfoils: Part II—Measured Profile and Secondary Losses at Off-Design Incidence
,” ASME Paper No. GT2007–27538.
24.
McAuliffe
,
B. R.
, and
Sjolander
,
S. A.
, 2004, “
Active Flow Control Using Steady Blowing for a Low-Pressure Turbine Cascade
,”
ASME J. Turbomach.
,
126
, pp.
560
569
.
25.
Mahallati
,
A.
,
McAuliffe
,
B. R.
,
Sjolander
,
S. A.
, and
Praisner
,
T. J.
, 2007, “
Aerodynamics of a Low-Pressure Turbine Airfoil at Low-Reynolds Numbers Part 1: Steady Flow Measurements
,” ASME Paper No. GT2007–27347.
26.
Knezevici
,
D. C.
,
Sjolander
,
S. A.
,
Praisner
,
T. J.
,
Allen-Bradley
,
E.
, and
Graver
,
E. A.
, 2009, “
Measurements of Secondary Losses in a High-Lift Front-Loaded Turbine Cascade With the Implementation of Non-Axisymmetric Endwall Contouring
,” ASME Paper No. GT2009–59677.
27.
Knezevici
,
D. C.
,
Sjolander
,
S. A.
,
Praisner
,
T. J.
,
Allen-Bradley
,
E.
, and
Grover
,
E. A.
, 2010, “
Measurements of Secondary Losses in a Turbine Cascade with the Implementation of Nonaxisymmetric Endwall Contouring
,”
ASME J. Turbomach.
,
132
, p.
011013
.
28.
Benner
,
M. W.
,
Sjolander
,
S. A.
, and
Moustapha
,
S. H.
, 2004, “
The Influence of Leading-Edge Geometry on Secondary Losses in a Turbine Cascade at the Design Incidence
,”
ASME J. Turbomach.
,
126
, pp.
277
287
.
29.
Mahallati
,
A.
, 2003, “
Aerodynamic of a Low-Pressure Turbine Airfoil under Steady and Periodically Unsteady Conditions
,” Ph.D. thesis, Carleton University, Ottawa, Canada.
30.
MacIsaac
,
G. D.
,
Taremi
,
F.
,
Knezevici
,
D. C.
,
Scribner
,
C. A.
, and
Sjolander
,
S. A.
, 2009, “
Challenges in Using Kiel and Seven-Hole Pressure Probes in Highly Three-Dimensional Flows: Application to Turbomachinery Cascade Measurements
,”
19th ISABE Conference Paper No. ISABE-2009–1209
, Montreal, QC, Sept. 11–17.
31.
Gerner
,
A. A.
,
Maurer
,
C. L.
, and
Gallington
,
R. W.
, 1984, “
Non-Nulling Seven-Hole Probes for High Angle Flow Measurement
,”
Exp. Fluids
,
2
, pp.
95
103
.
32.
Döebbeling
,
K.
,
Lenze
,
B.
, and
Leuckel
,
W.
, 1990, “
Computer-Aided Calibration and Measurements with a Quadruple Hotwire Probe
,”
Exp. Fluids
,
8
, pp.
257
262
.
33.
Buresti
,
G.
, and
Di Cocco
,
N. R.
, 1987, “
Hot-Wire Measurement Procedures and Their Appraisal Through a Simulation Technique
,”
J. Phys. E: Sci. Instrum.
,
20
, pp.
87
99
.
34.
Yaras
,
M.
, and
Sjolander
,
S. A.
, 1990, “
Development of the Tip-Leakage Flow Downstream of a Planar Cascade of Turbine Blades: Vorticity Field
,”
ASME J. Turbomach.
,
112
, pp.
609
617
.
35.
Kundu
,
P. K.
, and
Cohen
,
I. M.
, 2004,
Fluid Mechanics
,
3rd ed.
,
Elsevier Academic
,
San Diego, CA
, pp.
535
540
.
You do not currently have access to this content.