Experiments were performed to investigate interactions between a loaded stator and transonic rotor. The blade row interaction (BRI) rig was used to simulate an embedded transonic fan stage with realistic geometry (thin trailing edge), which produces a wake through diffusion. Details of the unsteady flow field between the stator and rotor were obtained using PIV. Flow-visualization images and PIV data that facilitate analysis of vortex shedding, wake motion, and wake-shock-interaction phenomena are presented. Stator wake and rotor-bow-shock interactions were analyzed for three stator/rotor axial spacings and two stator loadings. Specific shed vortices and wake topological features were isolated for each configuration. The data analysis focuses on measuring the vortex size, strength, and location as it forms on the stator trailing edge and propagates downstream into the rotor passage. It was observed that vortex shedding is synchronized to the passing of a rotor bow shock. Results show that the circulation of a vortex increased by 19% to 23% from far to close spacing due to the increased strength of the rotor bow shock impacting the stator trailing edge. Reduction in stator loading decreased shed vortex circulation for the same stator/rotor axial spacing by 20% to 25%. Pitchwise radius of vortices also decreased by 13% to 19% from far to close spacing. Such changes in vortex size and strength should be accounted for to predict the effect of unsteady blade-row interactions on transonic compressor performance.

References

References
1.
Adamczyk
,
J. J.
, 2000, “
Aerodynamic Analysis of Multistage Turbomachinery Flows in Support of Aerodynamic Design
,”
ASME J. Turbomach.
,
122
, pp.
189
217
.
2.
Hathaway
,
M. D.
,
Gertz
,
J. B.
,
Epstein
,
A. H.
, and
Strazisar
,
A. J.
, 1986, “
Rotor Wake Characteristics of a Transonic Axial-Flow Fan
,”
AIAA J.
,
24
(
11
), p.
1802
.
3.
Kotidis
,
P. A.
, and
Epstein
,
A. H.
, 1991, “
Unsteady Radial Transport in a Transonic Compressor Stage
,”
ASME J. Turbomach.
,
113
, pp.
207
218
.
4.
Van de Wall
,
A. G.
,
Kadambi
,
J. R.
,
Boyle
,
R. J.
, and
Adamczyk
,
J. J.
, 1996, “
The Transport of Vortices Through a Turbine Cascade
,”
ASME J. Turbomach.
,
118
(
4
), pp.
654
662
.
5.
Smith
,
L. H.
, 1993. “
Wake Ingestion Propulsion Benefit
,”
J. Propul. Power
,
9
(
1
), pp.
74
82
.
6.
Deregal
,
P.
, and
Tan
,
C. S.
, 1996, “
Impact of Rotor Wakes on Steady-State Axial Compressor Performance
,” ASME Paper 96-GT-253.
7.
Van Zante
,
D. E.
,
Adamczyk
,
J. J.
,
Strazisar
,
A. J.
, and
Okiishi
,
T. H.
, 2002, “
Wake Recovery Performance Benefit in a High-Speed Axial Compressor
,”
ASME J. Turbomach.
,
124
, pp.
275
284
.
8.
Smith
,
L. H.
, 1966, “
Wake Dispersion in Turbomachines
,”
ASME J. Basic Eng.
,
88
(3)
, pp.
668
690
.
9.
Mikolajczak
,
A. A.
, 1977, “
The Practical Importance of Unsteady Flow
,” Unsteady Phenomena in Turbomachinery (AGARD CP-144).
10.
Ottavy
,
X.
,
Trebinjac
,
I.
, and
Voullarmet
,
A.
, 2001, “
Analysis of the Interrow Flow Field Within a Transonic Axial Compressor: Part 1—Experimental Investigation
,”
ASME J. Turbomach.
,
123
, pp.
49
56
.
11.
Sanders
,
A.
, and
Fleeter
,
S.
, 2000, “
Experimental Investigation of Rotor-Inlet Guide Vane Interactions in Transonic Axial-Flow Compressor
,”
J. Propul. Power
,
16
, pp.
421
430
.
12.
Gorrell
,
S. E.
,
Copenhaver
,
W. W.
, and
Chriss
,
R. M.
, 2001, “
Upstream Wake Influences on the Measured Performance of a Transonic Compressor Stage
,”
J. Propul. Power
,
17
, pp.
43
48
.
13.
Gorrell
,
S. E.
,
Okiishi
,
T. H.
, and
Copenhaver
,
W. W.
, 2003, “
Stator-Rotor Interactions in a Transonic Compressor, Part 1: Effect of Blade-Row Spacing on Performance
,”
ASME J. Turbomach.
,
125
, pp.
328
335
.
14.
Gorrell
,
S. E.
,
Okiishi
,
T. H.
, and
Copenhaver
,
W. W.
, 2003, “
Stator-Rotor Interactions in a Transonic Compressor, Part 2: Description of a Loss Producing Mechanism
,”
ASME J. Turbomach.
,
125
, pp.
336
345
.
15.
Turner
,
M. G.
,
Gorrell
,
S. E.
, and
Car
,
D.
, 2005, “
Radial Migration of Shed Vortices in a Transonic Rotor Following a Wake Generator: A Comparison Between Time Accurate and Average Passage Approach
,”
ASME J. Turbomach.
, Paper GT2005-68776,
133
, p.
031018
.
16.
Gorrell
,
S. E.
,
Car
,
D.
,
Puterbaugh
,
S. L.
,
Estevadeordal
,
J.
, and
Okiishi
,
T. H.
, 2006, “
An Investigation ofWake-Shock Interactions with Digital Particle Image Velocimetry and Time-Accurate Computational Fluid Dynamics
,”
ASME J. Turbomach.
,
128
(
4
), pp.
616
626
.
17.
Langford
,
M. D.
,
Breeze-Stringfellow
,
A.
,
Guillot
,
S. A.
,
Solomon
,
W.
,
Ng
,
W.
, and
Estevadeordal
,
J.
, 2007, “
Experimental Investigation of the Effects of a Moving Shock Wave on Compressor Stator Flow
,”
ASME J. Turbomach.
,
129
(
1
), pp.
127
135
.
18.
van de Wall
,
A.
,
Breeze-Stringfellow
,
A.
, and
Dailey
,
L.
, 2006, “
Computational Investigation of Unsteady Flow Mechanisms in Compressors with Embedded Supersonic Rotors
,” ASME Paper GT2006-90633.
19.
Estevadeordal
,
J.
,
Gorrell
,
S.
, and
Copenhaver
,
W.
, 2007, “
PIV Study of Wake-Rotor Phenomena in a Transonic Compressor Under Various Operating Conditions
,”
J. Propul. Power
,
23
, pp.
235
242
.
20.
Van Zante
,
D.
,
Chen
,
J.
,
Hathaway
,
D.
, and
Chriss
,
R.
, 2008, “
The Influence of Compressor Blade Row Interaction Modeling on Performance Estimates from Time-Accurate, Multistage, Navier-Stokes Simulations
,”
ASME J. Turbomach.
,
130
(
1
), p.
011009
.
21.
List
,
M. G.
,
Gorrell
,
S. E.
, and
Turner
,
M. G.
, 2010, “
Investigation of Loss Generation in an Embedded Transonic Fan Stage at Several Gaps Using High-Fidelity, Time-Accurate Computational Fluid Dynamics
,”
ASME J. Turbomach.
,
132
, p.
011014
.
22.
Nolan
,
S. P. R.
,
Botros
,
B. B.
,
Tan
,
C. S.
,
Adamczyk
,
J. J.
,
Greitzer
,
E. M.
, and
Gorrell
,
S. E.
, 2009, “
Effects of Upstream Wake Phasing on Transonic Axial Compressor Performance
,”
ASME J. Turbomach.
, Paper GT2009-59596,
133
, p.
021010
.
23.
Chen
,
J. P.
, and
Briley
,
W. R.
, 2001, “
A Parallel Flow Solver for Unsteady Multiple Blade Row Turbomachinery Simulations
,” ASME Paper 2001-GT-348.
24.
List
,
M. G.
,
Gorrell
,
S. E.
,
Turner
,
M. G.
, and
Nimersheim
,
J. A.
, 2007, “
High-Fidelity Modeling of Blade Row Interaction in a Transonic Compressor
,” AIAA Paper No. 2007-5045.
25.
Estevadeordal
,
J.
,
Gorrell
,
S.
,
Gebbie
,
D.
, and
Puterbaugh
,
S.
, 2007, “
PIV Study of Blade-Row Interactions in a Transonic Compressor
,” AIAA Paper No. 2007-5017.
26.
Estevadeordal
,
J.
,
Gorrell
,
S.
, and
Puterbaugh
,
S.
, 2008, “
PIV Measurements of Blade-Row Interactions in a Transonic Compressor for Various Operating Conditions
,” AIAA Paper No. 2008-4700.
27.
McCray
,
T. W.
,
Estevadeordal
,
J.
, and
Puterbaugh
,
S. L.
, 2005, “
Parallel Computing for Linux Clusters Application to Particle Image Velocimetry
,” AIAA Paper No. 2005-1385.
28.
Estevadeordal
,
J.
, and
Kleis
,
S. J.
, 1999, “
High-Resolution Measurements of Two-Dimensional Instabilities and Turbulence Transition in Plane Mixing Layers
,”
Exp. Fluids
,
27
(
4
), pp.
378
390
.
29.
Coleman
,
H. W.
, and
Steele
,
W. G.
, 1989,
Experimentation and Uncertainty Analysis for Engineers
,
Wiley and Sons
,
New York
.
30.
Inoue
,
L. Y. T.
,
Berry
,
D. A.
, and
Parmigiani
,
G.
, 2005, “
Relationship Between Bayesian and Frequentist Sample Size Determination
,”
Am. Stat.
,
59
(1)
, pp.
79
87
.
31.
Raffel
,
M.
,
Willert
,
C. E.
, and
Kompenhans
,
J.
, 1998,
Particle Image Velocimetry
,
Springer
,
New York
.
32.
Turner
,
M. G.
,
Norris
,
A.
, and
Veres
,
J.
, 2003, “
High Fidelity 3D Simulation of the GE90
,” AIAA Paper No. 2003-3996.
You do not currently have access to this content.