The flow conditions at both the cooling hole exit as well as the cooling hole entrance affect the cooling performance downstream of cylindrical and fan-shaped holes in a very different way. The conseqences of a change in a flow parameter very obviously depend on the respective hole geometry. To gain an as complete as possible view of the specific effects of varying operating conditions and hence an enhanced understanding of the dominating mechanisms, a variation of the hole geometry is imperative. The expansion angle of the diffuser, the inclination angle of the hole, and the length of the cylindrical part at the hole entrance are considered to be the most important geometric parameters of diffuser holes. The effect of a change of exactly these parameters on the film cooling performance will be analyzed. For a better assessment of the characteristic effects associated with contouring of the hole, every diffuser hole is compared to an adequate cylindrical hole. The comparison will be performed by means of discharge coefficients and local and laterally averaged adiabatic film cooling effectiveness and heat transfer coefficients derived from experiments.

References

References
1.
Saumweber
,
C.
, and
Schulz
,
A.
, 2008, “
Free-Stream Effects on the Cooling Performance of Cylindrical and Fan-Shaped Cooling Holes
,” ASME Paper No. GT2008-51030.
2.
Saumweber
,
C.
, and
Schulz
,
A.
, 2008, “
Comparison of the Cooling Performance of Cylindrical and Fan-Shaped Cooling Holes with Special Emphasis on the Effect of Internal Coolant Cross- Flow
,” ASME Paper No. GT2008-51036.
3.
Saumweber
,
C.
,
Schulz
,
A.
, and
Wittig
,
S.
, 2003, “
Free-Stream Turbulence Effects on Film Cooling With Shaped Holes
,”
ASME J. Turbomach.
,
125
(
1
), pp.
65
74
.
4.
Saumweber
,
C.
, and
Schulz
,
A.
, 2004, “
Effects of Hole Geometry and Row Spacing on the Cooling Performance Downstream of the Second Row of Holes
,”
ASME J. Turbomach.
,
126
(
2
), pp.
237
247
.
5.
Foster
,
N. W.
, and
Lampard
,
D.
, 1980, “
The Flow and Film Cooling Effectiveness Following Injection through a Row of Holes
,”
ASME J. Eng. Power
,
102
, p.
5
.
6.
Goldstein
,
R. J.
, and
Stone
,
L. D.
, 1997, “
Row-of-Holes Film Cooling of Curved Walls at Low Injection Angles
,”
ASME J. Turbomach.
,
119
(
3
), pp.
574
580
.
7.
Baldauf
,
S.
,
Schulz
,
A.
, and
Wittig
,
S.
, 2001, “
High Resolution Measurements of Local Effectiveness From Discrete Hole Film Cooling
,”
ASME J. Turbomach.
,
123
(
4
), pp.
758
766
.
8.
Kohli
,
A.
, and
Bogard
,
D. G.
, 1997, “
Adiabatic Effectiveness, Thermal Fields, and Velocity Fields for Film Cooling with Large Angle Injection
,”
ASME J. Turbomach.
,
119
(
2
), pp.
352
359
.
9.
Kruse
,
H.
, 1985, “
Effects of Hole Geometry, Wall Curvature and Pressure Gradient on Film Cooling Downstream of a Single Row
,” AGARD Paper No. AGARD-CP-390.
10.
Hyams
,
D. G.
, and
Leylek
,
J. H.
, 1997, “
A Detailed Analysis of Film Cooling Physics Part III: Streamwise Injection with Shaped Holes
,” ASME Paper No. 97-GT-271.
11.
Hay
,
N.
,
Lampard
,
D.
, and
Saluja
,
C. L.
, 1985, “
Effects of Cooling Films on the Heat Transfer Coefficient on a Flat Plate with Zero Mainstream Pressure Gradient
,”
ASME J. Gas Turbines Power
,
107
, pp.
105
110
.
12.
Ammari
,
H. D.
,
Hay
,
N.
, and
Lampard
,
D.
, 1990, “
The Effect of Density Ratio on the Heat Transfer Coefficient from a Film-Cooled Flat Plate
,”
ASME J. Turbomach.
,
112
(
3
), pp.
444
451
.
13.
Baldauf
,
S.
,
Scheurlen
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
, 2002, “
Heat Flux Reduction from Film Cooling and Correlation of Heat Transfer Coefficients from Thermographic Measurements at Engine Like Conditions
,”
ASME J. Turbomach.
,
124
(
4
), pp.
699
710
.
14.
Leylek
,
J. H.
, and
Zerkle
,
R. D.
, 1994, “
Discrete-Jet Film Cooling: A Comparison of Computational Results with Experiments
,”
ASME J. Turbomach.
,
116
(
3
), pp.
358
369
.
15.
Burd
,
S. W.
, and
Simon
,
T. W.
, 1997, “
The Influence of Coolant Supply Geometry on Film Coolant Exit Flow and Surface Adiabatic Effectiveness
,” ASME Paper No. 97-GT-25.
16.
Burd
,
S. W.
,
Kaszeta
,
R. W.
, and
Simon
,
T. W.
, 1998, “
Measurements in Film Cooling Flows: Hole L/D and Turbulence Intensity Effects
,”
ASME J. Turbomach.
,
120
(
4
), pp.
791
799
.
17.
Lutum
,
E.
, and
Johnson
,
B. V.
, 1999, “
Influence of the Hole Lengthto- Diameter Ratio on Film Cooling with Cylindrical Holes
,”
ASME J. Turbomach.
,
121
(
2
), pp.
209
217
.
18.
Garg
,
V. K.
, and
Gaugler
,
R. E.
, 1997, “
Effect of Velocity and Temperature Distribution at the Hole Exit on Film Cooling of Turbine Blades
,”
ASME J. Turbomach.
,
119
(
2
), pp.
343
352
.
19.
Lichtarowicz
,
A.
,
Duggins
,
R. K.
, and
Markland
,
E.
, 1965, “
Discharge Coefficients for Incompressible Non-Cavitating Flow through Long Orifices
,”
J. Mech. Eng. Sci.
,
7
(
2
), pp.
210
219
.
20.
Chen
,
P.-H.
,
Ding
,
P. P.
,
Hung
,
M.-S.
, and
Shih
,
P.-C.
, 1999, “
Film Cooling over a Concave Surface through a Row of Expanded Holes
,” ASME Paper No. 99-GT-33.
21.
Goldstein
,
R. J.
,
Eckert
,
E.
, and
Burggraf
,
F.
, 1974, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
(
5
), pp.
595
607
.
22.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
, 1998, “
Adiabatic Wall Effectiveness Measurements of Film Cooling Holes with Expanded Exits
,”
ASME J. Turbomach.
,
120
(
3
), pp.
549
557
.
23.
Haven
,
B. A.
, and
Kurosaka
,
M.
, 1997, “
Kidney and Anti-Kidney Vortices in Crossflow Jets
,”
J. Fluid Mech.
,
352
, pp.
27
64
.
24.
Haven
,
B. A.
,
Yamagata
,
D. K.
,
Kurosaka
,
M.
,
Yamawaki
,
S.
, and
Maya
,
T.
, 1997, “
Anti-Kidney Pair of Vortices in Shaped Holes and their Influence on Film Cooling Effectiveness
,” ASME Paper No. 97-GT-45.
25.
Barthet
,
S.
, and
Bario
,
F.
, 2001, “
Experimental Investigation of Film Cooling Flow Induced by Shaped Holes on a Turbine Blade
,”
Heat Transfer in Gas Turbine Systems
,
Annals of the New York Academy of Sciences
,
New York
, Vol.
934
.
26.
Lutum
,
E.
,
von Wolfersdorf
,
J.
,
Weigand
,
B.
, and
Semmler
,
K.
, 2000, “
Film Cooling on a Convex Surface with Zero Pressure Gradient Flow
,”
Int. J. Heat Mass Transfer
,
43
(
16
), pp.
2973
2987
.
27.
Thole
,
K.
,
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
, 1998, “
Flow Field Measurements for Film Cooling Holes with Expanded Exits
,”
ASME J. Turbomach.
,
120
(
2
), pp.
327
337
.
28.
Kohli
,
A.
, and
Bogard
,
D. G.
, 1999, “
Effects of Hole Shape on Film Cooling with Large Angle Injection
,” ASME Paper No. 99-GT-165.
29.
Cho
,
H. H.
,
Rhee
,
D. H.
, and
Kim
,
B. G.
, 1999, “
Film Cooling Effectiveness and Heat/Mass Transfer Coefficient Measurement around a Conical-Shaped Hole with a Compound Angle Injection
,” ASME Paper No. 99-GT-38.
30.
Songling
,
L.
,
Hongzhou
,
X.
,
Huireng
,
Z.
,
Forest
,
A. E.
, and
Lapworth
,
B. L.
, 1997, “
A Study of the Flow and Heat Transfer Around a Single Flared Film Cooling Hole, Part I: Experimental Investigation
,”
Proceedings of the 13th International Symposium on Air Breathing Engines (ISABE)
, Chattanooga, TN, USA.
31.
Lapworth
,
B. L.
,
Forest
,
A. E.
, and
Songling
,
L.
, 1997, “
A Study of the Flow and Heat Transfer Around a Single Flared Film Cooling Hole, Part II: Numerical Investigation
,”
Proceedings of the 13th International Symposium on Air Breathing Engines (ISABE)
,
Chattanooga, TN, USA
.
32.
Sargison
,
J. E.
,
Guo
,
S. M.
,
Oldfield
,
M. L. G.
,
Lock
,
G. D.
, and
Rawlinson
,
A. J.
, 2002, “
A Converging Slot-Hole Film-Cooling Geometry Part 1: Low-Speed Flat-Plate Heat Transfer and Loss
,”
ASME J. Turbomach.
,
124
(
3
), pp.
453
460
.
33.
Sargison
,
J. E.
,
Guo
,
S. M.
,
Oldfield
,
M. L. G.
,
Lock
,
G. D.
, and
Rawlinson
,
A. J.
, 2002, “
A Converging Slot-Hole Film-Cooling Geometry Part 2: Transonic Nozzle Guide Vane Heat Transfer and Loss
,”
ASME J. Turbomach.
,
124
(
3
), pp.
461
471
.
34.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
, 2000, “
Film Cooling Holes with Expanded Exits: Near-Hole Heat Transfer Coefficients
,”
Int. J. Heat Fluid Flow
,
21
(
2
), pp.
146
155
.
35.
Dittmar
,
J.
,
Schulz
,
A.
, and
Wittig
,
S.
, 2003, “
Assessment of Various Film Cooling Configurations including Shaped and Compound Angle Holes based on Large Scale Experiments
,”
ASME J. Turbomach.
,
125
(
1
), pp.
57
65
.
36.
Makki
,
Y.
, and
Jakubowski
,
G.
, 1986, “
An Experimental Study of Film Cooling from Diffused Trapezoidal Shaped Holes
,” AIAA Paper No. 86–1326.
37.
Snell
,
R. J.
, and
Henshaw
,
D. G.
, 1991, “
Measurement and Optimization of Film Cooling Performance at Engine Representative Conditions. Turbomachinery: Latest Developments in a Changing Scene
,”
Proceedings of the Institution of Mechanical Engineers
, Paper No. C423/010.
38.
Hay
,
N.
, and
Lampard
,
D.
, 1995, “
The Discharge Coefficient of Flared Film Cooling Holes
,” ASME Paper No. 95-GT-15.
39.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
, 1998, “
Discharge Coefficient Measurements of Film Cooling Holes with Expanded Exits
,”
ASME J. Turbomach.
,
120
(
3
), pp.
557
564
.
40.
Haller
,
B.
, and
Camus
,
J.
, 1984, “
Aerodynamic Loss Penalty Produced by Film Cooling Transonic Turbine Blades
,”
ASME J. Eng. Power
,
106
(
1
), pp.
198
206
.
41.
Reiss
,
H.
, and
Bölcs
,
A.
, 2000, “
Aerodynamic Loss Measurements in a Linear Cascade with Film Cooling Injection
,”
Proceedings of the 15th Bi-annual Symposium on Measurement Techniques in Transonic and Supersonic Flow in Cascades and Turbomachines
,
University of Florence
,
Italy
.
42.
Rowbury
,
D. A.
,
Oldfield
,
M. L. G.
, and
Lock
,
G. D.
, 2001, “
Large- Scale Testing to Validate the Influence of External Crossflow on the Discharge Coefficients of Film Cooling Holes
,”
ASME J. Turbomach.
,
123
(
3
), pp.
583
591
.
You do not currently have access to this content.