From literature and our own studies, it is known that the effects of hot gas cross-flow and, in particular, the turbulence of the hot gas flow highly influence the spreading of the coolant in the near hole vicinity. Moreover, the velocity of the hot gas flow expressed by a hot gas Mach number obviously plays a much more important role in the case of diffuser holes than with simple cylindrical holes. To realize a certain blowing rate, a higher pressure ratio needs to be established in the case of higher Mach numbers. This in turn may strongly affect the diffusion process in the expanded portion of a fan-shaped cooling hole. The said effects will be discussed in great detail. The effects of free-stream Mach number and free-stream turbulence, including turbulence intensity, integral length scale, and periodic unsteady wake flow will be considered. The comparative study is performed by means of discharge coefficients and by local and laterally averaged adiabatic film cooling effectiveness and heat transfer coefficients. Both cooling holes have a length-to-diameter ratio of 6 and an inclination angle of 30 deg. The fan-shaped hole has an expansion angle of 14 deg. The effect of the coolant cross-flow at the hole entrance is not considered in this study, i.e., plenum conditions exist at the hole entrance.

References

References
1.
Saumweber
,
C.
,
Schulz
,
A.
, and
Wittig
,
S.
, 2003, “
Free-Stream Turbulence Effects on Film Cooling With Shaped Holes
,”
ASME J. Turbomach.
,
125
, pp.
65
73
.
2.
Saumweber
,
C.
, and
Schulz
,
A.
, 2004, “
Effects of Hole Geometry and Row Spacing on the Cooling Performance Downstream of the Second Row of Holes
,”
ASME J. Turbomach.
,
126
, pp.
237
246
.
3.
Choe
,
H.
,
Kays
,
W. M.
, and
Moffat
,
R. J.
, 1974, “
The Superposition Approach to Film Cooling
,”
ASME Paper No. 74-WA/GT-27
.
4.
Saumweber
,
C.
, and
Schulz
,
A.
, 2008, “
Comparison of the Cooling Performance of Cylindrical and Fan-Shaped Cooling Holes With Special Emphasis on the Effect of Internal Coolant Cross-Flow
,”
ASME Paper No. GT2008-51036
.
5.
Hay
,
N.
,
Lampard
,
D.
, and
Benmansour
,
S.
, 1983, “
Effect of Crossflows on the Discharge Coefficient of Film Cooling Holes
,”
ASME J. Eng. Gas Turbines Power
,
105
, pp.
243
248
.
6.
Rowbury
,
D. A.
,
Oldfield
,
M. L. G.
, and
Lock
,
G. D.
, 1997, “
Engine Representative Discharge Coefficient Measurements in an Annular Nozzle Guide Vane Cascade
,”
ASME Paper No. 97-GT-99
.
7.
Rowbury
,
D. A.
,
Oldfield
,
M. L. G.
, and
Lock
,
G. D.
, 2001, “
Large-Scale Testing to Validate the Influence of External Crossflow on the Discharge Coefficients of Film Cooling Holes
,”
ASME J. Turbomach.
,
123
, pp.
593
600
.
8.
Liess
,
C.
, 1975, “
Experimental Investigation of Film Cooling With Ejection From a Row of Holes for the Application to Gas Turbine Blades
,”
ASME J. Eng. Power
,
97
, pp.
21
27
.
9.
Snell
,
R. J.
, and
Henshaw
,
D. G.
, 1991, “
Measurement and Optimization of Film Cooling Performance at Engine Representative Conditions
,”
Proceedings of the Institution of Mechanical Engineers, Turbomachinery: Latest Developments in a Changing Scene, Paper No. C423/010
.
10.
Baldauf
,
S.
, and
Scheurlen
,
M.
, 1996, “
CFD Based Sensitivity Study of Flow Parameters for Engine Like Film Cooling Conditions
,”
ASME Paper No. 96-GT-310
.
11.
Lutum
,
E.
,
von Wolfersdorf
,
J.
,
Semmler
,
K.
, and
Weigand
,
B.
, 2001, “
Film Cooling on a Convex Surface: Influence of External Pressure Gradient and Mach Number on Film Cooling Performance
,”
Heat Mass Transfer
,
38
, pp.
7
16
.
12.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
, 1998, “
Adiabatic Wall Effectiveness Measurements of Film Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
, pp.
549
556
.
13.
Ligrani
,
P. M.
,
Saumweber
,
C.
,
Schulz
,
A.
, and
Wittig
,
S.
, 2001, “
Shock Wave—Film Cooling Interactions in Transonic Flows
,”
ASME J. Turbomach.
,
123
, pp.
788
797
.
14.
Lutum
,
E.
, 2001, “
Experimentelle Filmkühlungsuntersuchungen zylindrischer und konturierter Bohrungsgeometrien an gekrümmten Oberflächen
,” Ph. D. Dissertation, Institut für Thermodynamik der Luft- und Raumfahrt, Universität Stuttgart, Stuttgart, Germany.
15.
Ames
,
F. E.
, 1998, “
Aspects of Vane Film Cooling With High Turbulence: Part I—Heat Transfer
,”
ASME J. Turbomach.
,
120
, pp.
768
776
.
16.
Van Fossen
,
G. J.
, and
Bunker
,
R. S.
, 2002, “
Augmentation of Stagnation Region Heat Transfer Due to Turbulence From an Advanced Dual-Annular Combustor
,”
ASME Paper No. GT-2002-30184
.
17.
Goebel
,
S. G.
,
Abuaf
,
N.
,
Lovett
,
J. A.
, and
Lee
,
C.-P.
, 1993, “
Measurements of Combustor Velocity and Turbulence Profiles
,”
ASME Paper No. 93-GT-228
.
18.
Jumper
,
G. W.
,
Elrod
,
W. C.
, and
Rivir
,
R. B.
, 1991, “
Film Cooling Effectiveness in High-Turbulence Flow
,”
ASME J. Turbomach.
,
113
, pp.
479
483
.
19.
Kadotani
,
K.
, and
Goldstein
,
R. J.
, 1979, “
On the Nature of Jets Entering a Turbulent Flow Part A—Jet-Mainstream Interaction
,”
ASME J. Eng. Power
,
101
, pp.
459
465
.
20.
Bons
,
J. P.
,
McArthur
,
C. D.
, and
Rivir
,
R. B.
, 1996, “
The Effect of High Freestream Turbulence on Film Cooling Effectiveness
,”
ASME J. Turbomach.
,
118
, pp.
814
825
.
21.
Schmidt
,
D. L.
, and
Bogard
,
D. G.
, 1996, “
Effects of Free-Stream Turbulence and Surface Roughness on Film Cooling
,”
ASME Paper No. 96-GT-462
.
22.
Ames
,
F. E.
, 1998, “
Aspects of Vane Film Cooling With High Turbulence: Part II—Adiabatic Effectiveness
,”
ASME J. Turbomach.
,
120
, pp.
777
784
.
23.
Kohli
,
A.
, and
Bogard
,
D. G.
, 1998, “
Effects of Very High Free-Stream Turbulence on the Jet-Mainstream Interaction in a Film Cooling Flow
,”
ASME J. Turbomach.
,
120
, pp.
785
790
.
24.
Drost
,
U.
, and
Boelcs
,
A.
, 1999, “
Performance of a Turbine Airfoil With Multiple Film Cooling Stations Part I: Heat Transfer and Film Cooling Effectiveness
,”
ASME Paper No. 99-GT-171
.
25.
Mayle
,
R. E.
,
Dullenkopf
,
K.
, and
Schulz
,
A.
, 1998, “
The Turbulence That Matters
,”
ASME J. Turbomach.
,
120
, pp.
402
409
.
26.
Kadotani
,
K.
, and
Goldstein
,
R. J.
, 1979, “
On the Nature of Jets Entering a Turbulent Flow Part B—Film Cooling Performance
,”
ASME J. Eng. Power
,
101
, pp.
466
470
.
27.
Abhari
,
R. S.
, and
Epstein
,
A. H.
, 1994, “
An Experimental Study of Film Cooling in a Rotating Transonic Turbine
,”
ASME J. Turbomach.
,
116
, pp.
63
70
.
28.
Von Hoyningen-Huene
,
M.
,
Frank
,
W.
, and
Jung
,
A. R.
, 2000, “
Three-Dimensional Time Resolved Flow Field in the First and Last Turbine Stage of a Heavy Duty Gas Turbine, Part I: Secondary Flow Field
,”
ASME Paper No. 2000-GT-0438
.
29.
Von Hoyningen-Huene
,
M.
,
Frank
,
W.
, and
Jung
,
A. R.
, 2000, “
Three-Dimensional Time Resolved Flow Field in the First and Last Turbine Stage of a Heavy Duty Gas Turbine, Part II: Interpretation of Blade Pressure Fluctuations
,”
ASME Paper No. 2000-GT-0439
.
30.
Mayle
,
R. E.
, 1991, “
The Role of Laminar-Turbulent Transition in Gas-Turbine Engines
,”
ASME J. Turbomach.
,
113
, pp.
509
537
.
31.
Ligrani
,
P. M.
,
Gong
,
R.
,
Cuthrell
,
J. M.
, and
Lee
,
J. S.
, 1996, “
Bulk Flow Pulsations and Film Cooling—I. Injectant Behaviour
,”
Int. J. Heat Mass Transfer
,
39
, pp.
2271
2282
.
32.
Ligrani
,
P. M.
,
Gong
,
R.
,
Cuthrell
,
J. M.
, and
Lee
,
J. S.
, 1996, “
Bulk Flow Pulsations and Film Cooling—II. Flow Structure and Film Effectiveness
,”
Int. J. Heat Mass Transfer
,
39
, pp.
2283
2292
.
33.
Ligrani
,
P. M.
,
Lee
,
J. S.
, and
Seo
,
H. J.
, 1998, “
Investigations of the Effects of Bulk Flow Pulsations on Film Cooling as Applied to Gas Turbine Engines
,”
Proceedings of the 11th International Heat Transfer Conference
, Kyongju, Korea.
34.
Sohn
,
D. K.
, and
Lee
,
J. S.
, 1997, “
The Effect of Bulk Flow Pulsations on Film Cooling From Two Rows of Holes
,”
ASME Paper No. 97-GT-129
.
35.
Dullenkopf
,
K.
,
Schulz
,
A.
, and
Wittig
,
S.
, 1991, “
The Effect of Incident Wake Conditions on the Mean Heat Transfer of an Airfoil
,”
ASME J. Turbomach.
,
113
, pp.
412
418
.
36.
Souslov
,
D.
,
Dullenkopf
,
K.
,
Schulz
,
A.
, and
Wittig
,
S.
, 2002, “
Development and Application of a Novel Technique for Direct Heat Flux Measurements in Turbomachinery Flows
,”
Flow, Turbulence and Combustion 69
,
Kluwer Academic
,
Berlin
.
37.
Sautner
,
M.
,
Clouser
,
S.
, and
Han
,
J. C.
, 1993, “
Determination of Surface Heat Transfer and Film Cooling Effectiveness in Unsteady Wake Flow Conditions
,”
AGARD-CP-527, Paper No. 6
.
38.
Ou
,
S.
,
Han
,
J.-C.
,
Mehandale
,
A. B.
, and
Lee
,
C. P.
, 1994, “
Unsteady Wake Over a Linear Turbine Blade Cascade With Air and CO2 Film Injection: Part I—Effect on Heat Transfer Coefficients
,”
ASME J. Turbomach.
,
116
, pp.
721
729
.
39.
Du
,
H.
,
Han
,
J. C.
, and
Ekkad
,
S. V.
, 1998, “
Effect of Unsteady Wake on Detailed Heat Transfer Coefficient and Film Effectiveness Distributions for a Gas Turbine Blade
,”
ASME J. Turbomach.
,
120
, pp.
808
817
.
40.
Teng
,
S.
,
Sohn
,
D.-K.
, and
Han
,
J.-C.
, 2000, “
Unsteady Wake Effect on Film Temperature and Effectiveness Distributions for a Gas Turbine Blade
,”
ASME J. Turbomach.
,
122
, pp.
340
347
.
41.
Mehendale
,
A. B.
,
Han
,
J.-C.
,
Ou
,
S.
, and
Lee
,
C. P.
, 1994, “
Unsteady Wake Over a Linear Turbine Blade Cascade With Air and CO2 Film Injection: Part II—Effect on Film Effectiveness and Heat Transfer Distributions
,”
ASME J. Turbomach.
,
116
, pp.
730
737
.
42.
Funazaki
,
K.
,
Yokota
,
M.
, and
Yamawaki
,
S.
, 1997, “
Effect of Periodic Wake Passing on Film Effectiveness of Discrete Cooling Holes Around the Leading Edge of a Blunt Body
,”
ASME J. Turbomach.
,
119
, pp.
292
301
.
43.
Funazaki
,
K.
,
Koyabu
,
E.
, and
Yamawaki
,
S.
, 1998, “
Effect of Periodic Wake Passing on Film Effectiveness of Inclined Discrete Cooling Holes Around the Leading Edge of a Blunt Body
,”
ASME J. Turbomach.
,
120
, pp.
70
78
.
44.
Ou
,
S.
, and
Han
,
J.-C.
, 1994, “
Unsteady Wake Effect on Film Effectiveness and Heat Transfer Coefficient From a Turbine Blade With One Row of Air and CO2 Film Injection
,”
ASME J. Heat Transfer.
,
116
, pp.
921
928
.
45.
Heidmann
,
J. D.
,
Lucci
,
B. L.
, and
Reshotko
,
E.
, 2001, “
An Experimental Study of the Effect of Wake Passing on Turbine Blade Film Cooling
,”
ASME J. of Turbomach.
,
123
, pp.
214
221
.
You do not currently have access to this content.