The present study investigated convective heat transfer inside a two-pass rectangular duct with guide vanes in the turning region. The objective was to determine the effect of the guide vanes on blade-tip cooling. The duct had a hydraulic diameter (Dh) of 26.67 mm and an aspect ratio (AR) of 5. The duct inlet width was 80 mm, and the distance between the tip of the divider and the tip wall of the duct was also 80 mm. Various guide vane configurations were used in the turning region. The Reynolds number (Re), based on the hydraulic diameter, was held constant at 10,000. The naphthalene sublimation technique was used to determine the detailed local heat-transfer coefficients, using the heat-and mass-transfer analogy. The results indicate that guide vanes in the turning region enhance heat transfer in the blade-tip region. The guide vane on the second-pass side of the turning region had higher heat transfer than the guide vane on the first-pass side. Strong secondary flow enhanced heat transfer in the blade-tip region. Dean vortices induced by the guide vanes pushed the high-momentum core flow toward the tip wall, and heat transfer was increased in the turning region, but decreased in the second passage. Consequently, a guide vane on the second-pass side of the turning region generates high-heat-transfer rates on the tip surface, and can also increase the thermal performance factor in a two-pass duct.

References

References
1.
Lakshminarayana
,
B.
, 1996,
Fluid Dynamics and Heat Transfer of Turbomachinery
,
John Wiley and Sons
,
New York
.
2.
Bunker
,
R. S.
, 2001, “
A Review of Turbine Blade Tip Heat Transfer
,”
Ann. NY Acad. Sci.
,
934
, pp.
64
79
.
3.
Sunden
,
B.
, and
Xie
,
G.
, 2010, “
Gas Turbine Blade Tip Heat Transfer and Cooling: A Literature Survey
,”
Heat Transfer Eng.
,
31
(
7
), pp.
527
554
.
4.
Park
,
J. S.
,
Han
,
J. C.
,
Huang
,
Y.
, and
Ou
,
S.
, 1992, “
Heat Transfer Performance Comparisions of Five Different Rectangular Channels with Parallel Angled Ribs
,”
Int. J. Heat Transfer
,
35
(
11
), pp.
2891
2903
.
5.
Han
,
J. C.
,
Chandra
,
P. R.
, and
Lau
,
S. C.
, 1988, “
Local Heat/Mass Transfer Distributions Around Sharp 180 Deg Turns in Two-Pass Smooth and Rib-Roughened Channels
,”
Int. J. Heat Transfer
,
110
, pp.
91
98
.
6.
Cardone
,
G.
,
Astarita
,
T.
, and
Carlomagno
,
G. M.
, 1995, “
Surface Flow Visualization Around a 180 Deg Turn Channel for Different Aspect Ratios
,”
Flow Visualization VII
,
J.
Crowder
, ed.,
Begell House, Redding
,
CT
, pp.
977
982
.
7.
Astarita
,
T.
,
Cardone
,
G.
, and
Carlomagno
,
G. M.
, 1998, “
Average Heat Transfer Measurements Near a Sharp 180 Degree Turn Channel for Different Aspect ratios
,”
Proceedings of IMECHE Conference Transactions
,
Mechanical Engineering Publications
,
London
, pp.
137
146
.
8.
Mochizuki
,
S.
,
Murata
,
A.
,
Shibata
,
R.
, and
Yang
,
J. W.
, 1999, “
Detailed Measurements of Local Heat Transfer Coefficients in Turbulent Flow Through Smooth and Rib-Roughened Passages with a 180 Sharp Bend
,”
Int. J. Heat Mass Transfer
,
42
, pp.
1925
1934
.
9.
Kim
,
K. M.
,
Lee
,
D. H.
, and
Cho
,
H. H.
, 2007, “
Detailed Measurement of Heat–Mass Transfer and Pressure Drop in a Rotating Two-Pass Duct with Transverse Ribs
,”
Int. J. Heat Mass Transfer
,
43
, pp.
801
815
.
10.
Kim
,
K. M.
,
Lee
,
D. H.
,
Rhee
,
D. H.
, and
Cho
,
H. H.
, 2006, “
Local Heat/Mass Transfer Phenomena in Rotating Passage—Part I: Smooth Passage
,”
J. Thermophys. Heat Transfer
,
20
(
2
), pp.
188
198
.
11.
Kim
,
K. M.
,
Lee
,
D. H.
,
Rhee
,
D. H.
, and
Cho
,
H. H.
, 2006, “
Local Heat/Mass Transfer Phenomena in Rotating Passage—Part 2: Angled Ribbed Passage
,”
J. Thermophys. Heat Transfer
,
20
(
2
), pp.
199
210
.
12.
Kim
,
K. M.
,
Lee
,
D. H.
, and
Cho
,
H. H.
, 2007, “
Rotational Effects on Pressure Drop in Smooth and Ribbed Two-Pass Ducts
,”
J. Thermophys. Heat Transfer
,
21
(
3
), pp.
644
647
.
13.
Kim
,
K. M.
,
Kim
,
Y. Y.
,
Lee
,
D. H.
,
Rhee
,
D. H.
, and
Cho
,
H. H.
, 2007, “
Influence of Duct Aspect Ratio on Heat/Mass Transfer in Coolant Passages with Rotation
,”
Int. J. Heat Fluid Flow
,
28
, pp.
357
373
.
14.
Cho
,
H. H.
,
Lee
,
S. Y.
, and
Rhee
,
D. H.
, 2004, “
Effects of Cross Ribs on Heat/Mass Transfer in a Two-Pass Rotating Duct
,”
Int. J. Heat Mass Transfer
,
40
, pp.
743
755
.
15.
Zehnder
,
F.
,
Schuler
,
M.
,
Weigand
,
B.
,
Wolfersdorf
,
J. V.
, and
Neumann
,
S. O.
, 2009, “
The Effect of Turning Vanes on Pressure Loss and Heat Transfer of a Ribbed Rectangular Two-Pass Internal Cooling Channel
,” ASME Paper No. GT2009-59482.
16.
Bunker
,
R. S.
, 2007, “
The Augmentation of Internal Blade Tip-Cap Cooling by Arrays of Shaped Pins
,” ASME Paper No. GT2007-27009.
17.
Tareq
,
S.
, and
Sunden
,
B.
, 2010, “
An Experimental Study of Heat Transfer and Pressure Drop on the Bend Surface of a U-Duct
,” ASME Paper No. GT2010-22139.
18.
Xie
,
G. N.
,
Sunden
,
B.
, and
Wang
,
Q.
, 2010, “
Predictions of Enhanced Heat Transfer of an Internal Blade Tip-Wall with Hemispherical Dimples or Protrusions
,” ASME Paper No. GT2010-22265.
19.
Jeon
,
Y. H.
,
Park
,
S. H.
,
Kim
,
K. M.
,
Lee
,
D. H.
, and
Cho
,
H. H.
, 2007, “
Effects of Bleed Flow on Heat/Mass Transfer in a Rotating Rib-Roughened Channel
,”
ASME J. Turbomach.
,
129
, pp.
636
642
.
20.
Ambrose
,
D.
,
Lawrenson
,
I. J.
, and
Sparke
,
C. H. S.
, 1975, “
The Vapor Pressure of Naphthalene
,”
J. Chem. Thermodyn.
,
7
, pp.
1173
1176
.
21.
Goldstein
,
R. J.
, and
Cho
,
H. H.
, 1995, “
A Review of Mass Transfer Measurements Using Naphthalene Sublimation
,”
Exp. Therm. Fluid Sci.
,
10
, pp.
416
434
.
22.
McAdams
,
W. H.
, 1942,
Heat Transmission
,
2nd ed.
,
McGraw-Hill
,
New York
.
23.
Moffat
,
R. J.
, 1988, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
24.
Petukhov
,
B. S.
, 1970,
Advances in Heat Transfer
, Vol.
6
,
Academic Press
,
New York
, pp.
503
504
.
25.
Grigull
,
U.
, and
Hahne
,
E.
, eds., 1969,
Progress in Heat and Mass Transfer
, Vol.
1
,
Pergamon Press
,
Oxford
, p.
331
.
26.
Fu
,
W. L.
,
Wright
,
L. M.
, and
Han
,
J. C.
, 2005, “
Heat Transfer in Two-Pass Rotating Rectangular Channels (AR = 1:2 and AR = 1:4) with 45 Deg Angled Rib Turbulators
,”
ASME J. Turbomach.
,
127
, pp.
164
174
.
You do not currently have access to this content.