This paper investigates the influence of coolant injection on the aerodynamic and thermal performance of a rotor blade cascade with endwall film cooling. A seven blade cascade of a high-pressure-rotor stage of a real gas turbine has been tested in a low speed wind tunnel for linear cascades. Coolant is injected through 10 cylindrical holes distributed along the blade pressure side. Tests have been preliminarily carried out at low Mach number (Ma2is = 0.3). Coolant-to-mainstream mass flow ratio has been varied in a range of values corresponding to inlet blowing ratios M1 = 0–4.0. Secondary flows have been surveyed by traversing a five-hole miniaturized aerodynamic probe in two downstream planes. Local and overall mixed-out secondary loss coefficient and vorticity distributions have been calculated from measured data. The thermal behavior has been also analyzed by using thermochromic liquid crystals technique to obtain film cooling effectiveness distributions. All this information, including overall loss production for variable injection conditions, allows us to draw a comprehensive picture of the aero-thermal flow field in the endwall region of a high pressure rotor blade cascade.

References

References
1.
Blair
,
M. F.
, 1974, “
An Experimental Study of Heat Transfer and Film Cooling on Large-Scale Turbine Endwalls
,”
ASME J. Heat Transfer
,
96
, pp.
524
529
.
2.
Roy
,
R. P.
,
Squires
,
K. D.
,
Gerendas
,
M.
,
Song
,
S.
,
Howe
,
W. J.
, and
Ansari
,
A.
, 2000, “
Flow and Heat Transfer at the Hub Endwall of Inlet Vane Passages - Experiments and Simulations
,” ASME Paper No. 2000-GT-198.
3.
Oke
,
R. A.
, and
Simon
,
T. W.
, 2002, “
Film Cooling Experiments with Flow Introduced upstream of a First Stage Nozzle Guide Vane through Slots of Various Geometries
,” ASME Paper No. 2002-GT-30169.
4.
Oke
,
R. A.
,
Simon
,
T. W.
,
Burd
,
S. W.
, and
Vahlberg
,
R.
, 2000, “
Measurements in a Turbine Cascade over a Contoured Endwall: Discrete Hole Injection of Bleed Flow
,” ASME Paper No. 2000-GT-214.
5.
Jabbari
,
M. J.
,
Marston
,
K. C.
,
Eckert
,
E. R. G.
, and
Goldstein
,
R. J.
, 1996, “
Film Cooling of the Gas Turbine Endwall by Discrete-Hole Injection
,”
ASME J. Turbomach.
,
118
, pp.
278
284
.
6.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
, 1996, “
Distribution of Film-Cooling Effectiveness on a Turbine Endwall Measured with the Ammonia and Diazo Technique
,”
ASME J. Turbomach.
,
118
, pp.
613
621
.
7.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
, 1997, “
Aerodynamic Aspects of Endwall Film-Cooling
,”
ASME J. Turbomach.
,
119
, pp.
786
793
.
8.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W.N.
, 1999, “
The Design of an Improved Endwall Film-Cooling Configuration
,”
ASME J. Turbomach.
,
121
, pp.
772
780
.
9.
Kost
,
F.
, and
Nicklas
,
M.
, 2001, “
Film-Cooled Turbine Endwall in a Transonic Flow Field: Part I - Aero-Dynamic Measurements
,” ASME Paper No. 2001-GT-0145.
10.
Nicklas
,
M.
, 2001, “
Film-Cooled Turbine Endwall in a Transonic Flow Field: Part II – Heat Transfer and Film-Cooling Effectiveness
,” ASME Paper No. 2001-GT-0146.
11.
Knost
,
D. G.
, and
Thole
,
K. A.
, 2004, “
Adiabatic Effectiveness Measurements of Endwall Film-Cooling for a First Stage Vane
,” ASME Paper No. 2004-GT-53326.
12.
Barigozzi
,
G.
,
Benzoni
,
G.
,
Franchini
,
G.
, and
Perdichizzi
,
A.
, 2006, “
Fan-Shaped Hole Effects on the Aero-Thermal Performance of a Film Cooled Endwall
,”
ASME J. Turbomach.
,
128
, pp.
43
52
.
13.
Barigozzi
,
G.
,
Franchini
,
G.
, and
Perdichizzi
,
A.
, 2007, “
Endwall Film Cooling through Fan-Shaped Holes with Different Area Ratios
,”
ASME J. Turbomach.
,
129
, pp.
212
220
.
14.
Blair
,
M. F.
, 1994, “
An Experimental Study of Heat Transfer in a Large-Scale Turbine Rotor Passage
,”
ASME J. Turbomach.
,
116
, pp.
1
13
.
15.
Olson
,
S. J.
,
Sanitjai
,
S.
,
Ghosh
,
K.
, and
Goldstein
,
R. J.
, 2009, “
Effect of Wake-Disturbed Flow on Heat (Mass) Transfer to a Turbine Blade
,” ASME Paper No. 2009-GT-60218.
16.
Wang
,
H.-P.
,
Olson
,
S. J.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
, 1997, “
Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades
,”
ASME J. Turbomach.
,
119
, pp.
1
8
.
17.
Goldstein
,
R. J.
, and
Spores
,
R. A.
, 1988, “
Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades
,”
ASME J. Heat Transfer
110
, pp.
862
869
.
18.
Papa
,
M.
,
Srinivasan
,
V.
, and
Goldstein
,
R. J.
, 2010, “
Film Cooling Effect of Rotor-Stator Purge Flow on Endwall Heat/Mass Transfer
,” ASME Paper No. 2010-GT-23178.
19.
Wright
,
L. M.
,
Blake
,
S. A.
,
Rhee
,
D. H.
, and
Han
,
J. C
, 2007, “
Effect of Upstream Wake With Vortex on Turbine Blade Platform Film Cooling With Simulated Stator-Rotor Purge Flow
,” ASME Paper No. 2007-GT-27092.
20.
Pau
,
M.
,
Paniagua
,
G.
,
Delhaye
,
D.
,
de la Loma
,
A.
, and
Ginibre
,
P.
, 2010, “
Aerothermal Impact of Stator-Rim Purge Flow and Rotor-Platform Film Cooling on a Transonic Turbine Stage
,”
ASME J. Turbomach.
,
132
, p.
021006
.
21.
Suryanarayanan
,
A.
,
Mhetras
,
S. P.
,
Schobeiri
,
M. T.
, and
Han
,
J. C.
, 2009, “
Film-Cooling Effectiveness on a Rotating Blade Platform
,”
ASME J. Turbomach.
,
131
, p.
011014
.
22.
Wright
,
L. M.
,
Blake
,
S. A.
, and
Han
,
J. C
, 2008, “
Film Cooling Effectiveness Distributions on a Turbine Blade Cascade Platform With Stator-Rotor Purge and Discrete Film Hole Flows
,”
ASME J. Turbomach.
,
130
, p.
031015
.
23.
Gao
,
Z.
,
Narzary
,
D.
, and
Han
,
J. C.
, 2008, “
Turbine Blade Platform Film Cooling with Typical Stator-Rotor Purge Flow and Discrete-Hole Film Cooling
,” ASME Paper No. 2008-GT-50286.
24.
Yang
,
H.
,
Gao
,
Z.
,
Chen
,
H. C.
,
Han
,
J. C.
, and
Schobeiri
,
M. T.
, 2009, “
Prediction of Film Cooling and Heat Transfer on a Rotating Blade Platform With Stator-Rotor Purge and Discrete Film-Hole Flows in a 1 1/2 Turbine Stage
,”
ASME J. Turbomach.
,
131
, p.
041003
.
25.
Suryanarayanan
,
A.
,
Ozturk
,
B.
,
Schobeiri
,
M. T.
, and
Han
,
J. C.
, 2010, “
Film-Cooling Effectiveness on a Rotating Turbine Platform Using Pressure Sensitive Paint Technique
,”
ASME J. Turbomach.
,
132
, p.
041001
.
26.
Shi
,
Y.
,
Li
,
J.
, and
Feng
,
Z.
, 2010, “
Influence of Rotor Blade Fillets on Aerodynamic Performance of Turbine Stage
,” ASME Paper No. 2010-GT-23721.
27.
Han
,
S.
, and
Goldstein
,
R. J.
, 2006, “
Influence of Blade Leading Edge Geometry on Turbine Endwall Heat (Mass) Transfer
,”
ASME J. Turbomach.
,
128
, pp.
798
813
.
28.
Han
,
S.
, and
Goldstein
,
R. J.
, 2007,”
Heat Transfer Study in a Linear Turbine Cascade Using a Thermal Boundary Layer Measurement Technique
,”
ASME J. Heat Transfer
129
, pp.
1384
1394
.
29.
Gregory-Smith
,
D. G.
,
Graves
,
C. P.
, and
Walsh
,
J. A.
, 1988, “
Growth of Secondary Losses and Vorticity in an Axial Turbine Cascade
,”
ASME J. Turbomach.
,
110
, pp.
1
8
.
30.
Camci
,
C.
,
Kim
,
K.
, and
Hippensteele
,
S. A.
, 1992, “
A New Hue Capturing Technique for the Quantitative Interpretation of Liquid Crystal Images Used in Convective Heat Transfer Studies
,”
ASME J. Turbomach.
,
114
, pp.
765
775
.
31.
Zess
,
G. A.
, and
Thole
,
K. A.
, 2002, “
Computational Design and Experimental Evaluation of Using a Leading Edge Fillet on a Gas Turbine Vane
,”
ASME J. Turbomach.
,
124
, pp.
167
175
.
32.
Pieringer
,
P.
, and
Sanz
,
W.
, 2004, “
Influence of the Fillet Between Blade and Casing on the Aerodynamic Performance of a Transonic Turbine Vane
,” ASME Paper No. GT2004-53119.
33.
Perdichizzi
,
A.
, 1990, “
Mach Number Effects on Secondary Flow Development Downstream of Turbine Cascade
,”
ASME J. Turbomach.
,
112
, pp.
643
651
.
You do not currently have access to this content.