The optimization of heat transfer between fluid and metal plays a crucial role in gas turbine design. An accurate prediction of temperature for each metal component can help to minimize the coolant flow requirement, with a direct reduction of the corresponding loss in the thermodynamic cycle. Traditionally, in industry fluid and solid simulations are conducted separately. The prediction of metal stresses and temperatures, generally based on finite element analysis, requires the definition of a thermal model whose reliability is largely dependent on the validity of the boundary conditions prescribed on the solid surface. These boundary conditions are obtained from empirical correlations expressing local conditions as a function of working parameters of the entire system, with validation being supplied by engine testing. However, recent studies have demonstrated the benefits of employing coupling techniques, whereby computational fluid dynamics (CFD) is used to predict the heat flux from the air to the metal, and this is coupled to the thermal analysis predicting metal temperatures. This paper describes an extension of this coupling process, accounting for the thermo-mechanical distortion of the metal through the engine cycle. Two distinct codes, a finite element analysis (FEA) solver for thermo-mechanical analysis and a finite volume solver for CFD, are iteratively coupled to produce temperatures and deformations of the solid part through an engine cycle. At each time step, the CFD mesh is automatically adapted to the FEA prediction of the metal position using efficient spring analogy methods, ensuring the continuity of the coupled process. As an example of this methodology, the cavity flow in a turbine stator well is investigated. In this test case, there is a strong link between the thermo-mechanical distortion, governing the labyrinth seal clearance, and the amount of flow through the stator well, which determines the resulting heat transfer in the stator well. This feedback loop can only be resolved by including the thermo-mechanical distortion within the coupling process.

References

References
1.
Dixon
,
J. A.
,
Verdicchio
,
J. A.
,
Benito
,
D.
,
Karl
,
A.
, and
Tham
,
K.
, 2004, “
Recent Developments in Gas Turbine Component Temperature Prediction Methods
,”
Proc. Inst. Mech. Eng. Part A
,
218
, pp.
241
255
.
2.
Heselhaus
,
A.
,
Vogel
,
D. T.
, and
Krain
,
H.
, 1992, “
Coupling of 3D Navier-Stokes External Flow Calculations and Internal 3D Heat Conduction Calculations for Cooled Turbine Blades
,”
Heat Transfer and Cooling in Gas Turbines, AGARD Conf. Proc.
40
, pp.
40.1
40.9
3.
Li
,
H.
, and
Kassab
,
A. J.
, 1994, “
A Coupled FVM/BEM Approach to Conjugate Heat Transfer in Turbine Blades
,” AIAA Paper No. 94- 1981.
4.
Bohn
,
D.
,
Bonhoff
,
H.
,
Schonenborn
,
H.
, and
Wilhelmi
,
H.
, 1995, “
Validation of a Numerical Model for the Coupled Simulation of Fluid Flow and Adiabatic Walls with Application to Film-Cooled Turbine Blades
,”
VDI-Ber
.
1186
, pp.
259
272
.
5.
Bohn
,
D.
,
Kruger
,
U.
, and
Kusterer
,
K.
, 2001, “
Conjugate Heat Transfer: An Advanced Computational Method for the Cooling Design of Modern Gas Turbine Blades and Vanes
,”
Heat Transfer in Gas Turbine
,
B.
Sunden
and
M.
Faghri
, eds.,
WIT Press
,
Southampton
, pp.
58
108
.
6.
Bohn
,
D.
,
Ren
,
J.
, and
Kusterer
,
K.
, 2003, “
Conjugate Heat Transfer Analysis for Film Cooling Configurations with Different Hole Geometries
,” ASME Paper No. GT2003-38369.
7.
Chew
,
J. W.
,
Taylor
,
I. J.
,
Bonsell
,
J. J.
, 1996, “
CFD Developments for Turbine Blade Heat Transfer
,”
IMechE. Conf. Trans.
,
1
, pp.
51
64
.
8.
Kusterer
,
K.
,
Bohn
,
D.
,
Sugimoto
,
T.
, and
Tanaka
,
R.
, 2004, “
Conjugate Calculations for a Film-Cooled Blade under Different Operating Conditions
,” ASME Paper No. GT2004-53719.
9.
Davison
,
J. B.
,
Ferguson
,
S. W.
,
Mendonca
,
F. G.
,
Peck
A. F.
, and
Thompson
,
A.
, 2008, “
Towards an Automated Simulation Process in Combined Thermal, Flow and Stress in Turbine Blade Cooling Analysis
,” ASME Paper No. GT2008-51287.
10.
Starke
,
C.
,
Janke
,
E.
,
Hofer
,
T.
, and
Lengani
,
D.
, 2008, “
Comparison of a Conventional Thermal Analysis of a Turbine Cascase to a Full Conjugate Heat Transfer Computation
,” ASME Paper No. GT2008-51151.
11.
He
,
L.
, and
Oldfield
,
M.
, 2009, “
Unsteady Conjugate Heat Transfer
,” ASME Paper No. GT2009-59174.
12.
Verdicchio
,
J. A.
,
Chew
,
J. W.
, and
Hills
,
N. J.
, 2001, “
Coupled Fluid/Solid Heat Transfer Computation for Turbine Discs
,” ASME Paper No. GT2001-0123.
13.
Mirzamoghadam
,
A. V.
, and
Xiao
,
Z.
, 2002, “
Flow and Heat Transfer in an Industrial Rotor-Stator Rim Sealing Cavity
,”
ASME J. Eng. Gas Turbines Power
,
124
, pp.
125
132
.
14.
Okita
,
Y.
, and
Yamawaki
,
S.
, 2002, “
Conjugate Heat Transfer Analysis of Turbine Rotor-Stator Systems
,” ASME Paper No. GT2002-30615.
15.
Okita
,
Y.
, 2006, “
Transient Thermal and Flow Field in a Turbine Disk Rotor-Stator System
,” ASME Paper No. GT2006-90033.
16.
Lewis
,
L. V.
, and
Provins
,
J. I.
, 2004, “
A Non-Coupled CFD-FE Procedure to Evaluate Windage and Heat Transfer in Rotor-Stator Cavities
,” ASME Paper No. GT2004-53246.
17.
Illingworth
,
J. B.
,
Hills
,
N. J.
, and
Barnes
,
C. J.
, 2005, “
3D Fluid-Solid Heat Transfer Coupling of an Aero Engine Pre-Swirl System
,” ASME Paper No. GT2005-68939.
18.
Alizadeh
,
S.
,
Saunders
,
K.
,
Lewis
,
L. V.
, and
Provins
,
J.
, 2007, “
The Use of CFD to Generate Heat Transfer Boundary Conditions for a Rotor-Stator Cavity in a Compressor Drum Thermal Model
,” ASME Paper No. GT2007-28333.
19.
Alizadeh
,
S.
,
Mabilat
,
C.
,
Jackson
,
D.
, and
Clarkson
,
R.
, 2008, “
Conjugate Heat Transfer Study of a Biaxial Rig: Application to the Lifing of HP Turbine Disc Firtrees
,” ASME Paper No. GT2008-51297.
20.
Sun
,
Z.
,
Chew
,
J.
,
Hills
,
N.
,
Volkov
,
K.
, and
Barnes
,
C.
, 2010, “
Efficient FEA/CFD Thermal Coupling For Engineering Applications
,”
ASME J. Turbomach.
,
132
, pp.
1
9
.
21.
Armstrong
,
I.
, and
Edmunds
,
T. M.
, 1989, “
Fully Automatic Analysis in the Industrial Environment
,”
Proceedings of 2nd International Conference on Quality Assurance and Standards
, NAFEMS.
22.
Hirsch
,
C.
, 1990, “
Numerical Computation of Internal and External Flows
,” John Wiley and Sons, New York.
23.
Moinier
,
P.
, 1999, “
Algorithm Developments for an Unstructured Viscous Flow Solver
,” Ph.D thesis, Oxford University, Oxford, UK.
24.
Crumpton
,
P. I.
, and
Giles
,
M. B.
, 2002, “
Oplus Fortran 77 library
,” http://www.comlab.ox.ac.ukhttp://www.comlab.ox.ac.uk.
25.
Hills
,
N.
, 2007, “
Achieving High Parallel Performance for an Unstructured Unsteady Turbomachinery CFD Code
,”
Royal Aeronautical Soc Aeronaut J
,
111
(1117)
, pp.
185
193
.
26.
Sun
,
Z.
,
Chew
,
J. W.
,
Hills
,
N. J.
,
Lewis
,
L.
, and
Mabilat
,
C.
, 2010, “
Coupled Aero-Thermal-Mechanical Simulation for a Turbine Assembly
,” ASME Paper No. GT2010-22673.
27.
Liu
,
X.
,
Qin
,
N.
, and
Xia
,
H.
, 2006, “
Fast Dynamic Grid Deformation Based on Delaunay Graph Mapping
,”
J. Comp. Phys.
,
211
, pp.
405
423
.
28.
Blom
,
F. J.
, and
Leyland
,
P.
, 1997. “
Analysis of Fluid-Structure Interaction on Moving Airfoils by Mean of an Improved ALE Method
,” AIAA Paper No. 1997-1770.
29.
Farhat
,
C.
, 2005, “
CFD on Moving Grids: from Theory to Realistic Flutter, Maneuvering, and Multidisciplinary Optimization
,”
Int. J. Comput. Fluid Dynam.
,
19
, pp.
595
603
.
30.
Batina
,
J. T.
, 1990, “
Unsteady Euler Airfoil Solutions Using Unstructured Dynamic Meshes
,”
AIAA J.
,
28
(
8
), pp.
1381
1388
.
31.
Barone
,
M. F.
, and
Payne
,
J. L.
, 2005, “
Methods for Simulation-Based Analysis of Fluid-Structure Interaction
,” SANDIA Report No. SAND2005-6573.
32.
Farhat
,
C.
,
Degand
,
C.
,
Koobus
,
B.
, and
Lesoinne
,
M.
, 1998, “
Torsional Springs for Two-Dimensional Dynamic Unstructured Fluid Meshes
,”
Comput. Methods Appl. Mech. Eng.
,
163
, pp.
231
245
.
33.
Burg
,
C. O. E.
, 2004, “
A Robust Unstructured Grid Movement Strategy Using Three-Dimensional Torsional Springs
,” AIAA Paper No. 2004–2628.
34.
Smith
,
I. M.
, and
Griffith
,
D. V.
, 2004, “
Programming the Finite Element Method
,” John Wiley and Sons, New York.
35.
Chew
,
J. W.
, and
Hills
,
N. J.
, 2009, “
Computational Fluid Dynamics and Virtual Aeroengine Modelling
,”
J. Mech. Eng. Sci. C
,
223
, pp.
2821
2834
.
You do not currently have access to this content.