An experimental investigation has been conducted to characterize the influence of Reynolds number and surface roughness magnitude and location on compressor cascade performance. Flow field surveys have been conducted in a low-speed, linear compressor cascade. Pressure, velocity, and loss have been measured via a five-hole probe, pitot probe, and pressure taps on the blades. Four different roughness magnitudes, Ra values of 0.38 μm (polished), 1.70 μm (baseline), 2.03 μm (rough 1), and 2.89 μm (rough 2), have been tested. Furthermore, various roughness locations have been examined. In addition to the as manufactured (baseline) and entirely rough blade cases, blades with roughness covering the leading edge, pressure side, and 5%, 20%, 35%, 50%, and 100% of suction side from the leading edge have been studied. All of the tests have been carried out for Reynolds numbers ranging from 300,000 to 640,000. For Reynolds numbers under 500,000, the tested roughnesses do not significantly degrade compressor blade loading or loss. However, loss and blade loading become sensitive to roughness at Reynolds numbers above 550,000. Cascade performance is more sensitive to roughness on the suction side than pressure side. Furthermore, roughness on the aft 2/3 of suction side surface has a greater influence on loss. For a given roughness location, there exists a Reynolds number at which loss begins to significantly increase. Finally, increasing the roughness area on the suction surface from the leading edge reduces the Reynolds number at which the loss begins to increase.

References

References
1.
Bammert
,
K.
, and
Woelk
,
G. U.
, 1979, “
Influence of the Blading Surface Roughness on the Aerodynamic Behavior and Characteristic of an Axial Compressor
,”
ASME J. Eng. Power
,
102
, pp.
283
287
.
2.
Schaffler
,
A.
, 1980, “
Experimental and Analytical Investigation of the Effects of Reynolds Number and Blade Surface Roughness on Multistage Axial Flow Compressors
,”
ASME J. Eng. Power
,
102
, pp.
5
13
.
3.
Malt’sev
,
Y. N.
, and
Shakov
,
V. G.
, 1989, “
Influence of Roughness of Deposits in Compressor Cascade on Flow Lag Angle
,”
Soviet Aeronautics (English translation of Izvestiya VUZ, Aviatsionnaya TekhnikaP)
,
32
, pp.
90
92
.
4.
Taylor
,
R. P.
, 1990, “
Surface Roughness Measurements on Gas Turbine Blades
,”
ASME J. Turbomach.
,
112
, pp.
175
180
.
5.
Bons
,
J. P.
,
Taylor
,
R. P.
,
McClain
,
S. T.
, and
Rivir
,
R. B.
, 2001, “
The Many Faces of Turbine Surface Roughness
,”
ASME J. Turbomach.
,
123
, pp.
739
748
.
6.
Leipold
,
R.
,
Boese
,
M.
, and
Fottner
,
L.
, 2000, “
The Influence of Technical Surface Roughness Caused by Precision Forging on the Flow Around a Highly Loaded Compressor Cascade
,”
ASME J. Turbomach.
,
122
, pp.
416
425
.
7.
Schreiber
,
H.-A.
,
Steinert
,
W.
, and
Kusters
,
B.
, 2002, “
Effects of Reynolds Number and Free-Stream Turbulence on Boundary Layer Transition in a Compressor Cascade
,”
ASME J. Turbomach.
,
124
, pp.
1
9
.
8.
Millsaps
,
K. T.
,
Baker
,
L. J.
, and
Patterson
,
J. S.
, 2004, “
Detection and Localization of Fouling in a Gas Turbine Compressor From Aerodynamic Measurements
,” ASME Paper No. GT2004-54173.
9.
Aker
,
G. F.
, and
Saravanamuttoo
,
H. I. H.
, 1989, “
Predicting Gas Turbine Performance Degradation due to Compressor Fouling Using Computer Simulation Techniques
,”
ASME J. Eng. Gas Turbines Power
,
111
, pp.
343
350
.
10.
Massardo
,
A. F.
, 1991, “
Simulation of Fouled Axial Multistage Compressors
,”
IMechE Conference on Turbomachinery
, Paper No. C423/048, pp.
243
252
.
11.
Syverud
,
E.
, and
Bakken
,
L. E.
, 2006, “
The Impact of Surface Roughness on Axial Compressor Performance Deterioration
,” ASME Paper No. GT2006-90004.
12.
Song
,
T. W.
,
Kim
,
T. S.
,
Kim
,
J. H.
, and
Ro
,
S. T.
, 2001, “
Performance Prediction of Axial Compressors Using Stage Characteristics and Simultaneous Calculation of Interstage Parameters
,”
Proc. Inst. Mech. Eng., Part A
,
215
, pp.
89
98
.
13.
Back
,
S. C.
,
Jeong
,
I. C.
,
Sohn
,
J. L.
, and
Song
,
S. J.
, 2009, “
Influence of Surface Roughness on the Performance of a Compressor Blade in a Linear Cascade–Experiment and Modeling
,” ASME Paper No. GT2009-59703.
14.
Tay
,
G. F. K.
,
Kuhn
,
D. C. S.
, and
Tachie
,
M. F.
, 2009, “
Particle Image Velocimetry Study of Rough-Wall Turbulent Flows in Favorable Pressure Gradient
,”
ASME J. Fluids Eng.
,
131
, p.
061205
.
15.
Pailhas
,
G.
,
Touvet
,
Y.
, and
Aupoix
,
B.
, 2008, “
Effects of Reynolds Number and Adverse Pressure Gradient on an Turbulent Boundary Layer Developing on a Rough Surface
,”
J. Turbul.
,
9
, pp.
1
24
.
16.
Bammert
,
K.
, and
Sandstede
,
H.
, 1980, “
Measurement of the Boundary Layer Development Along a Turbine Blade With Rough Surfaces
,”
ASME J. Eng. Power
,
102
, pp.
978
983
.
17.
Zhang
,
Q.
, and
Ligrani
,
P. M.
, 2006, “
Aerodynamic Losses of a Cambered Turbine Vane: Influences of Surface Roughness and Freestream Turbulence Intensity
,”
ASME J. Turbomach.
,
128
, pp.
536
546
.
18.
Yun
,
Y. I.
,
Park
,
I. Y.
, and
Song
,
S. J.
, 2005, “
Performance Degradation due to Blade Surface Roughness in a Single-Stage Axial Turbine
,”
ASME J. Turbomach.
,
127
, pp.
137
143
.
19.
Suder
,
K. L.
,
Chima
,
R. V.
,
Strazisar
,
A. J.
, and
Roberts
,
W. B.
, 1994, “
The Effect of Adding Roughness and Thickness to a Transonic Axial Compressor Rotor
,” ASME Paper No. 94-GT-339.
20.
Gbadebo
,
S. A.
,
Hynes
,
T. P.
, and
Cumpsty
,
N. A.
, 2004, “
Influence of Surface Roughness on Three-Dimensional Separation in Axial Compressors
,” ASME Paper No. GT2004-53619.
21.
Gelder
,
T. F.
,
Schmidt
,
J. F.
,
Suder
,
K. L.
, and
Hathaway
,
M. D.
, 1989, “
Design and Performance of Controlled-Diffusion Stator Compared With Original Double-Circular-Arc Stator
,” NASA Technical Paper No. 2852.
22.
Hansen
D. J.
, 1995, “
Investigation of Second Generation Controlled-Diffusion Compressor Blades in Cascade
,” M.S. thesis, Naval Postgraduate School, Monterey, CA.
23.
Roberts
,
S. K.
, and
Yaras
,
M. I.
, 2004, “
Boundary-Layer Transition Over Rough Surfaces With Elevated Free-Stream Turbulence
,” ASME Paper No. GT2004-53668,
24.
Brzek
,
B. G.
,
Cal
,
R. B.
,
Johansson
,
G.
, and
Castillo
,
L.
, 2008, “
Transitionally Rough Zero Pressure Gradient Turbulent Boundary Layers
,”
Exp. Fluids
,
44
, pp.
115
124
.
25.
Denton
,
J. D.
, 1993, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
, pp.
621
656
.
You do not currently have access to this content.