This paper describes the investigations performed to better understand unsteady flows that develop in a three-stage high-pressure compressor. More specifically, this study focuses on rotor-stator interactions and tip leakage flow effects on overall performance and aerodynamic stability. The investigation method is based on three-dimensional unsteady RANS simulations, considering the natural spatial periodicity of the compressor. Indeed, all information related to rotor-stator interactions can be computed. A comparison is first done with experimental measurements to outline the capacity of the numerical method to predict overall performance and unsteady flows. The results show that the simulation correctly estimates most flow features in the multistage compressor. Then numerical data obtained for three configurations of the same compressor are analyzed and compared. Configurations 1 and 2 consider two sets of tip clearance dimensions and a casing treatment based on a honeycomb design is applied for configuration 3. Detailed investigations of the flow at the same operating line show that the tip leakage flow is responsible for the loss of stability in the last stage. An increase by 30% of the tip clearance dimension dramatically reduces the stable operating range (by 40% with respect to the standard configuration). A modal analysis shows that the stall process in this case involves the perturbation of the flow in the last rotor by upstream stator wakes, leading to the development of a rotating instability. The control device designed and investigated in this study allows for reducing the sensitivity of the compressor to tip leakage flow by recovering the initial stable operating range.

References

References
1.
Day
,
I. J.
, 2006, “
The Fundamentals of Stall and Surge, Part 1: Stall, Part 2: Surge
,”
Advances in Axial Compressors Aerodynamics
, (VKI Lecture Series),
von Karman Institute
,
Brussels, Belgium
.
2.
Domercq
,
O.
and
Escuret
,
J.-F.
, 2007, “
Tip Clearance Effect on High-Pressure Compressor Stage Matching
,”
J. Power Energy
,
221
, pp.
759
767
.
3.
Crook
,
A. J.
,
Greitzer
,
E. M.
,
Tan
,
C. S.
, and
Adamczyk
,
J. J.
, 1993, “
Numerical Simulation of Compressor Endwall and Casing Treatment Flow Phenomena
,”
ASME J. Turbomach.
,
115
, pp.
501
512
.
4.
Inoue
,
M.
,
Kuroumaru
,
M.
,
Yoshida
,
S.
,
Minami
,
T.
,
Yamada
,
K.
, and
Furukawa
,
M.
, 2004, “
Effect of Tip Clearance on Stall Evolution Process in a Low-Speed Axial Compressor Stage
,” ASME Turbo Expo, Paper No. GT2004–53354, Vienna, Austria.
5.
Arnaud
,
D.
,
Ottavy
,
X.
, and
Vouillarmet
,
A.
, 2004, “
Experimental Investigation of the Rotor-Stator Interactions Within a High-Speed, Multi-Stage, Axial Compressor. Part 1 - Experimental Facilities and Results. Part 2 - Modal Analysis of the Interactions
,”
49th ASME Turbo Expo
, Vienna, Austria, Vol.
5A
, pp.
903
924
.
6.
Hathaway
,
M. D.
, 2006, “
Passive Endwall Treatments for Enhancing Stability
,”
Advances in Axial Compressor Aerodynamics
, (VKI Lecture Series),
von Karman Institute
,
Brussels, Belgium
.
7.
Niazi
,
S.
, 2000, “
Numerical Simulation of Rotating Stall and Surge Alleviation in Axial Compressor
,” PhD thesis, Georgia Institute of Technology, Atlanta, GA.
8.
Weigl
,
H. J.
,
Paduano
,
J. D.
,
Frechette
,
L. G.
,
Epstein
,
A. H.
,
Greitzer
,
E. M.
,
Bright
,
M. M.
, and
Strazisar
,
A. J.
, 1998, “
Active Stabilization of Rotating Stall and Surge in a Transonic Single-Stage Axial Compressor
,”
ASME J. Turbomach.
,
120
, pp.
625
636
.
9.
Shabbir
,
A.
and
Adamczyk
,
J. J.
, 2005, “
Flow Mechanism for Stall Margin Improvement due to Circumferential Casing Grooves on Axial Compressors
,”
ASME J. Turbomach.
,
127
, pp.
708
717
.
10.
Wilke
,
I.
and
Kau
,
H. P.
, 2004, “
A Numerical Investigation of the Flow Mechanisms in a High Pressure Compressor Front Stage With Axial Slots
,”
ASME J. Turbomach.
,
126
, pp.
339
349
.
11.
Brignole
,
G.
,
Kau
,
H. P.
, and
Wilke
,
I.
, 2005, “
Numerical Evaluation of Important Parameters Ruling the Effectiveness of Casing Treatments in Transonic Compressor
,”
17th Symposium on Airbreathing Engines
, Paper No. 2005–1095, Munich, Germany.
12.
Hah
,
C.
2009, “
Large Eddy Simulation of Transonic Flow Field in NASA Rotor 37
,”
47th AIAA Aerospace Sciences Meeting
, Paper No. 2009–1061, Orlando, FL, USA.
13.
Denton
,
J. D.
and
Singh
,
U. K.
, 1979, “
Time Marching Methods for Turbomachinery Flow Calculations
,” (VKI Lecture Series 1979-7), von Karman Institute, Brussels, Belgium.
14.
Erdos
,
J. I.
,
Alzner
,
E.
, and
McNally
,
W.
, 1977, “
Numerical Solution of Periodic Transonic Flow through a Fan Stage
,”
AIAA J.
,
15
, pp.
1559
1568
.
15.
Gopinath
,
A.
,
Van Der Weide
,
E.
,
Alonso
,
J. J.
,
Jameson
,
A.
,
Ekici
,
K.
, and
Hall
,
K. C.
, 2007, “
Three-Dimensional Unsteady Multi-Stage Turbomachinery Simulations Using the Harmonic Balance Technique
,”
45th AIAA Aerospace Sciences Meeting and Exhibit
, Paper No. 2007–0892, Reno, NV, USA.
16.
Hathaway
,
M. D.
,
Herrick
,
G.
,
Chen
,
J.
, and
Webster
,
R.
, 2004, “
Time Accurate Unsteady Simulation of the Stall Inception Process in the Compression System of a US Army Helicopter Gas Turbine Engine
,”
Proceedings of the DoD Users Group Conference
, Washington, DC, USA, pp.
182
193
.
17.
Gourdain
,
N.
,
Boussuge
,
J.-F.
, and
Stoll
,
M.
, 2008, “
Numerical Simulation of a Full High Pressure Compressor
,”
5th European Congress on Computational Methods in Applied Sciences and Engineering
, Venice, Italy.
18.
Ottavy
,
X.
,
Trébinjac
,
I.
, and
Vouillarmet
A.
, 2001, “
Analysis of the Inter-Row Flow Field Within a Transonic Axial Compressor: Part 2 - Unsteady Flow Analysis
,”
ASME J. Turbomach.
,
123
, pp.
57
63
.
19.
Ottavy
,
X.
,
Trébinjac
,
I.
,
Vouillarmet
,
A.
, and
Arnaud
,
D.
, 2003, “
Laser Measurements in High Speed Compressors for Rotor-Stator Interaction Analysis
,”
Proceedings of 6th ISAIF
, Shanghaï, China.
20.
Cambier
,
L.
and
Veuillot
,
J. P.
, 2008, “
Status of the elsA CFD Software for Flow Simulation and Multidisciplinary Applications
,”
46th AIAA Aerospace Science Meeting and Exhibit
, Paper No. 2008–664, Reno, NV, USA.
21.
Roe
,
P. L.
, 1981, “
Approximate Riemann Solvers, Parameter Vectors and Difference Schemes
,”
J. of Comput. Phys
,
43
, pp.
357
372
.
22.
Yoon
,
S.
and
Jameson
,
A.
, 1987, “
An LU-SSOR Scheme for the Euler and Navier-Stokes Equations
,”
AIAA 25th Aerospace Sciences Meeting
, Paper No. 87–0600, Reno, NV, USA.
23.
Jameson
,
A.
, 1991, “
Time Dependent Calculations Using Multigrid, with Applications to Unsteady Flows Past Airfoils and Wings
,”
10th AIAA Computational Fluid Dynamics Conference
, Paper No. 91–1596.
24.
Wilcox
,
D. C.
, 1988, “
Reassessment of the Scale-Determining Equation for Advanced Turbulence Models
,”
AIAA J.
,
26
, pp.
1299
1310
.
25.
Fillola
,
G.
,
Le Pape
,
M.-C.
, and
Montagnac
,
M.
2004, “
Numerical Simulations Around Wing Control Surfaces
,”
24th International Congress of the Aeronautical Sciences ICAS
, Yokohama, Japan.
26.
Sharma
,
V.
,
Aupoix
,
B.
,
Schvallinger
,
M.
, and
Gaible
,
H.
, 2007, “
Turbulence Modelling Effects on Off-Design Predictions for a Multi-Stage Compressor
,”
18th International Symposium on Air Breathing Engines
, Paper No. 2007–1183, Beijing, China.
27.
Goncalves
,
E.
and
Houdeville
,
R.
, 2005, “
Reassessment of the Wall Functions Approach for RANS Computations
,”
Aerosp. Sci. Technol.
,
5
, pp.
1
14
.
28.
Khalid
,
S. J.
, 1996, “
Compressor Endwall Treatment
,” U.S. Patent No. 5,520,508.
29.
Gourdain
,
N.
,
Ottavy
,
X.
, and
Vouillarmet
,
A.
, 2009, “
Experimental and Numerical Investigation of Unsteady Flows in a High-Speed Three Stages Compressor
,”
8th European Turbomachinery Conference
, Paper No. 2009–107, Graz, Austria.
30.
Gourdain
,
N.
,
Montagnac
,
M.
,
Wlassow
,
F.
, and
Gazaix
,
M.
, 2010, “
High Performance Computing to Simulate Large Scale Industrial Flows in Multistage Compressors
,”
Int. J. High Perform. Comput. Appl.
,
24
, pp.
429
443
.
31.
Tyler
,
J. M.
and
Sofrin
,
T. G.
, 1962, “
Axial Flow Compressor Noise Studies
,”
SAE Trans.
,
70
, pp.
309
332
.
You do not currently have access to this content.