The present experimental study is part of a comprehensive heat transfer analysis on a highly loaded low pressure turbine blade and endwall with varying surface roughness. Whereas a former paper (Lorenz et al., 2009, “An Experimental Study of Airfoil and Endwall Heat Transfer in a Linear Turbine Blade Cascade—Secondary Flow and Surface Roughness Effects,” International Symposium on Heat Transfer in Gas Turbine Systems, Aug. 9–14, Antalya, Turkey) focused on full span heat transfer of a smooth airfoil and surface roughness effects on the endwall, in this work further measurements at the airfoil midspan with different deterministic surface roughness are considered. Part I investigates the external heat transfer enhancement due to rough surfaces, whereas part II focuses on surface roughness effects on aerodynamic losses. A set of different arrays of deterministic roughness is investigated in these experiments, varying the height and eccentricity of the roughness elements, showing the combined influence of roughness height and anisotropy of the rough surfaces on laminar to turbulent transition and the turbulent boundary layer as well as boundary layer separation on the pressure and suction side. It is shown that, besides the known effect of roughness height, eccentricity of roughness plays a major role in the onset of transition and the turbulent heat transfer. The experiments are conducted at several freestream turbulence levels (Tu1=1.410.1%) and different Reynolds numbers.

1.
Taylor
,
R. P.
, 1990, “
Surface Roughness Measurements on Gas Turbine Blades
,”
ASME J. Turbomach.
0889-504X,
112
, pp.
175
180
.
2.
Bons
,
J. P.
,
Taylor
,
R. P.
,
McClain
,
S. T.
, and
Rivir
,
R. B.
, 2001, “
The Many Faces of Turbine Surface Roughness
,”
ASME
Paper No. 2001-GT-0163.
3.
Barlow
,
D. N.
,
Kim
,
Y. W.
, and
Florschuetz
,
L. W.
, 1997, “
Transient Liquid Crystal Technique for Convective Heat Transfer on Rough Surfaces
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
14
22
.
4.
Hosni
,
M. H.
,
Coleman
,
H. W.
, and
Taylor
,
R. P.
, 1998, “
Rough-Wall Heat Transfer in Turbulent Boundary Layers
,”
Int. J. Fluid Mech. Res.
1064-2285,
25
(
1–3
), pp.
212
219
.
5.
Bogard
,
D. G.
,
Schmidt
,
D. L.
, and
Tabbita
,
M.
, 1998, “
Characterization and Laboratory Simulation of Turbine Airfoil Surface Roughness and Associated Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
337
342
.
6.
Bons
,
J. P.
, 2002, “
St and cf Augmentation for Real Turbine Roughness With Elevated Freestream Turbulence
,”
ASME
Paper No. GT-2002-30198.
7.
Bons
,
J. P.
, and
McClain
,
S. T.
, 2003, “
The Effect of Real Turbine Roughness With Pressure Gradient on Heat Transfer
,”
ASME
Paper No. GT2003-T38738.
8.
Turner
,
A. B.
,
Tarada
,
F. H. A.
, and
Bayley
,
F. J.
, 1985, “
Effects of Surface Roughness on Heat Transfer to Gas Turbine Blades
,” Paper No. 9, AGARD-CP-390.
9.
Hoffs
,
A.
,
Drost
,
U.
, and
Bölcs
,
A.
, 1996, “
Heat Transfer Measurements on a Turbine Airfoil at Various Reynolds Numbers and Turbulence Intensities Including Effects of Surface Roughness
,”
ASME
Paper No. 96-GT-169.
10.
Abuaf
,
N.
,
Bunker
,
R. S.
, and
Lee
,
C. P.
, 1997, “
Effects of Surface Roughness on Heat Transfer and Aerodynamic Performance of Turbine Airfoils
,”
ASME
Paper No. 97-GT-10.
11.
Bunker
,
R. S.
, 1997, “
Separate and Combined Effects of Surface Roughness and Turbulence Intensity on Vane Heat Transfer
,”
ASME
Paper No. 97-GT-135.
12.
Boyle
,
R. J.
,
Spuckler
,
C. M.
,
Lucci
,
B. L.
, and
Camperchioli
,
W. P.
, 2000, “
Infrared Low Temperature Turbine Vane Rough Surface Heat Transfer Measurements
,”
ASME
Paper No. 2000-GT-0216.
13.
Blair
,
M. F.
, 1994, “
An Experimental Study of Heat Transfer in a Large-Scale Turbine Rotor Passage
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
1
13
.
14.
Dees
,
J. E.
, and
Bogard
,
D. G.
, 2007, “
Effects of Regular and Random Roughness on the Heat Transfer and Skin Friction Coefficient on the Suction Side of a Gas Turbine Vane
,”
ASME
Paper No. GT-2007-27285.
15.
Stripf
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
, 2005, “
Surface Roughness Effects on External Heat Transfer of a HP Turbine Vane
,”
ASME J. Turbomach.
0889-504X,
127
, pp.
200
208
.
16.
Stripf
,
M.
,
Schulz
,
A.
, and
Bauer
,
H. -J.
, 2007, “
Roughness and Secondary Flow Effects on Turbine Vane External Heat Transfer
,”
J. Propul. Power
0748-4658,
23
(
2
), pp.
283
291
.
17.
Stripf
,
M.
,
Schulz
,
A.
, and
Bauer
,
H. -J.
, 2006, “
Modeling of Rough Wall Boundary Layer Transition and Heat Transfer on Turbine Airfoils
,”
ASME
Paper No. GT-2006-90316.
18.
Stripf
,
M.
,
Schulz
,
A.
,
Bauer
,
H. -J.
, and
Wittig
,
S.
, 2009, “
Extended Models for Transitional Rough Wall Boundary Layers With Heat Transfer—Part I: Model Formulations
,”
ASME J. Turbomach.
0889-504X,
131
(
3
), p.
031016
.
19.
Stripf
,
M.
,
Schulz
,
A.
,
Bauer
,
H. -J.
, and
Wittig
,
S.
, 2009, “
Extended Models for Transitional Rough Wall Boundary Layers with Heat Transfer—Part II: Model Validation and Benchmarking
,”
ASME J. Turbomach.
0889-504X,
131
(
3
), p.
031017
.
20.
Stripf
,
M.
, 2007, “
Einfluss der Oberflächenrauigkeit auf die transitionale Grenzschicht an Gasturbinenschaufeln
,”
Forschungsberichte aus dem Institut für Thermische Strömungsmaschinen
,
Logos
,
Berlin
, Vol.
38
.
21.
McClain
,
S. T.
,
Hodge
,
B. K.
, and
Bons
,
J. P.
, 2003, “
Predicting Skin Friction for Turbulent Flow Over Randomly-Rough Surfaces Using the Discrete-Element Method: Part I—Surface Characterization
,”
Joint Fluids Engineering Conference
, Honolulu, HI, Paper No. FEDSM2003-45411.
22.
McClain
,
S. T.
,
Hodge
,
B. K.
, and
Bons
,
J. P.
, 2003, “
Predicting Skin Friction for Turbulent Flow Over Randomly-Rough Surfaces Using the Discrete-Element Method: Part II—Skin Friction Validation
,”
Joint Fluids Engineering Conference
, Honolulu, HI, Paper No. FEDSM2003-45412.
23.
Roach
,
P. E.
, 1987, “
The Generation of Nearly Isotropic Turbulence by Means of Grids
,”
Int. J. Heat Fluid Flow
0142-727X,
8
, pp.
82
92
.
24.
Schiele
,
R.
, 1999, “
Die transitionale Grenzschicht an Gasturbinenschaufeln: Experimentelle Untersuchungen und Entwicklung eines neuen Verfahrens zur numerischen Beschreibung des laminar-turbulenten Umschlags
,”
Forschungsberichte aus dem Institut für Thermische Strömungsmaschinen
,
Logos
,
Berlin
, Vol.
10
.
25.
Stripf
,
M.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
, 2005, “
Surface Roughness and Secondary Flow Effects on External Heat Transfer of a High Pressure Turbine Vane
,”
17th International Symposium on Airbreathing Engines
, Sept. 4–9, Munich, Germany, Paper No. ISABE-2005-1116.
26.
Waigh
,
D. R.
, and
Kind
,
R. J.
, 1998, “
Improved Aerodynamic Characterization of Regular Three-Dimensional Roughness
,”
AIAA J.
0001-1452,
36
(
6
), pp.
1117
1119
.
27.
Sigal
,
A.
, and
Danberg
,
J. E.
, 1990, “
New Correlation of Roughness Density Effect on the Turbulent Boundary Layer
,”
AIAA J.
0001-1452,
28
(
3
), pp.
554
556
.
28.
van Rij
,
J. A.
,
Belnap
,
B. J.
, and
Ligrani
,
P. M.
, 2002, “
Analysis and Experiments on Three-Dimensional, Irregular Surface Roughness
,”
ASME J. Fluids Eng.
0098-2202,
124
, pp.
671
677
.
29.
Koch
,
C. C.
, and
Smith
,
L. H.
, 1976, “
Loss Sources and Magnitudes in Axial-Flow Compressors
,”
ASME J. Eng. Power
0022-0825,
98
, pp.
411
424
.
30.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
77
, pp.
3
8
.
31.
Turner
,
A. B.
, 1970, “
Heat Transfer Instrumentation
,” Paper No. AGARD-CP-73.
32.
Wittig
,
S.
,
Schulz
,
A.
, and
Bauer
,
H. -J.
, 1985, “
Effects of Wakes on the Heat Transfer in Gas Turbine Cascades
,” Paper No. AGARD-CP-390.
33.
Lorenz
,
M.
,
Stripf
,
M.
,
Schulz
,
A.
, and
Bauer
,
H. -J.
, 2008, “
External Heat Transfer Measurements on a Turbine Airfoil in a Linear Cascade
,”
Proceedings of the 19th International Symposium on Transport Phenomena
, Reykjavik.
34.
Jones
,
W. P.
, and
Launder
,
B. E.
, 1972, “
The Prediction of Laminarization With a Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transfer
0017-9310,
15
, pp.
301
314
.
35.
Lorenz
,
M.
,
Schulz
,
A.
, and
Bauer
,
H. -J.
, 2009, “
An Experimental Study of Airfoil and Endwall Heat Transfer in a Linear Turbine Blade Cascade—Secondary Flow and Surface Roughness Effects
,”
International Symposium on Heat Transfer in Gas Turbine Systems
, Aug. 9–14, Antalya, Turkey.
This content is only available via PDF.
You do not currently have access to this content.