Heat transfer measurements of a confined impingement cooling configuration with ribs on the target surfaces are presented. The assembly consists of four nonperpendicular walls of which one holds two rows of staggered inclined jets, each impinging on a different adjacent wall. The ribs are aligned with the inclined jet axes, have the same pitch, and are staggered to the impinging jets. The flow exhausts through two staggered rows of holes opposing the impingement wall. The passage geometry is related to a modern gas turbine blade cooling configuration. A transient liquid crystal technique was used to take spatially resolved surface heat transfer measurements for the ground area between the ribs. A comparison with the smooth baseline configuration reveals local differences and a generally reduced heat transfer for the rib-roughened case. Furthermore, lumped heat capacity measurements of the ribs yielded area averaged heat transfer information for the ribs. From the combination of ground and rib heat transfer measurements, it is concluded that the overall performance of the ribbed configuration depends on the Reynolds number. Of the five investigated jet Reynolds numbers from 10,000 to 75,000, only for the highest Re the averaged Nusselt numbers increase slightly compared with the smooth baseline configuration.

1.
Weigand
,
B.
,
Semmler
,
K.
, and
von Wolfersdorf
,
J.
, 2001, “
Heat Transfer Technology for Internal Passages of Air-Cooled Blades for Heavy-Duty Gas Turbines
,”
Heat Transfer in Gas Turbine Systems (Annals of the New York Academy of Sciences)
,
R. J.
Goldstein
, ed.,
New York Academy of Sciences
,
New York
, Vol.
934
, pp.
179
193
.
2.
Han
,
J.
, and
Dutta
,
S.
, 2001, “
Recent Developments in Turbine Blade Internal Cooling
,”
Heat Transfer in Gas Turbine Systems (Annals of the New York Academy of Sciences)
,
R. J.
Goldstein
, ed.,
New York Academy of Sciences
,
New York
, Vol.
934
, pp.
162
178
.
3.
Martin
,
H.
, 1977, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Adv. Heat Transfer
0065-2717,
13
, pp.
1
60
.
4.
Han
,
J.
, and
Goldstein
,
R.
, 2001, “
Jet Impingement Heat Transfer in Gas Turbine Systems
,”
Heat Transfer in Gas Turbine Systems (Annals of the New York Academy of Sciences)
,
R.
Goldstein
, ed.,
New York Academy of Sciences
,
New York
, Vol.
934
, pp.
147
161
.
5.
Zuckerman
,
N.
, and
Lior
,
N.
, 2005, “
Impingement Heat Transfer: Correlations and Numerical Modeling
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
544
552
.
6.
Zuckerman
,
N.
, and
Lior
,
N.
, 2006, “
Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling
,”
Adv. Heat Transfer
0065-2717,
39
, pp.
565
631
.
7.
Weigand
,
B.
, and
Spring
,
S.
, 2009, “
Multiple Jet Impingement—A Review
,”
Proceedings of the International Symposium on Heat Transfer in Gas Turbine Systems
, Antalya, Turkey.
8.
Han
,
J. -C.
,
Dutta
,
S.
, and
Ekkad
,
S.
, 2001,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor & Francis
,
London
.
9.
Jia
,
R.
,
Rokni
,
M.
, and
Sund’en
,
B.
, 2001, “
Impingement Cooling in a Rib-Roughened Channel With Cross-Flow
,”
Int. J. Numer. Methods Heat Fluid Flow
0961-5539,
11
, pp.
642
662
.
10.
Andrews
,
G.
,
Hussain
,
R. A.
, and
Mkpadi
,
M.
, 2006, “
Enhanced Impingement Heat Transfer: The Influence of Impingement X/D for Interrupted Rib Obstacles (Rectangular Pin Fins)
,”
ASME J. Turbomach.
0889-504X,
128
, pp.
321
331
.
11.
Taslim
,
M. E.
,
Bakhtari
,
K.
, and
Liu
,
H.
, 2003, “
Experimental and Numerical Investigation of Impingement on a Rib-Roughened Leading Edge Wall
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
682
691
.
12.
Rhee
,
D.
,
Nam
,
Y.
, and
Cho
,
H.
, 2004, “
Local Heat/Mass Transfer With Various Rib Arrangements in Impingement/Effusion Cooling System With Crossflow
,”
ASME J. Turbomach.
0889-504X,
126
, pp.
615
626
.
13.
Andrews
,
G.
,
Hussain
,
R. A.
, and
Mkpadi
,
M.
, 2003, “
Enhanced Impingement Heat Transfer: Comparison of Co-Flow and Cross-Flow With Rib Turbulators
,”
Proceedings of the International Gas Turbine Congress
, Paper No. IGTC2003Tokyo TS-075.
14.
Annerfeldt
,
M.
,
Persson
,
J.
, and
Torisson
,
T.
, 2001, “
Experimental Investigation of Impingement Cooling With Turbulators or Surface Enlarging Elements
,”
ASME
Paper No. 2001-GT-0149.
15.
Chang
,
H.
,
Zhang
,
J.
, and
Huang
,
T.
, 2000, “
Experimental Investigation on Impingement Heat Transfer from Rib Roughened Surface Within Arrays of Circular Jets: Correlation
,”
ASME
Paper No. 2000-GT-220.
16.
Coletti
,
F.
,
Facchinetti
,
E.
, and
Arts
,
T.
, 2009, “
Effect of Inclined Ribs on the Aero-Thermal Performance of a Trailing Edge Cavity With Crossing Jets
,”
Proceedings of the Eighth European Turbomachinery Conference
, Graz, Austria, pp.
485
495
.
17.
Hwang
,
J. -J.
, and
Cheng
,
C. -S.
, 2001, “
Impingement Cooling in Triangular Ducts Using an Array of Side-Entry Jets
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
1053
1063
.
18.
Pamula
,
G.
,
Ekkad
,
S.
, and
Acharya
,
S.
, 2001, “
Influence of Crossflow-Induced Swirl and Impingement on Heat Transfer in a Two-Pass Channel Connected by Two Rows of Holes
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
281
287
.
19.
Ekkad
,
S.
,
Kontrovitz
,
D.
,
Nasir
,
H.
,
Pamula
,
G.
, and
Acharya
,
S.
, 2001, “
Effect of Rib Turbulators in the First Pass on Heat Transfer Distributions in a Two-Pass Channel Connected by Two Rows of Holes
,”
ASME
Paper No. 2001-GT-0184.
20.
Ireland
,
P. T.
, and
Jones
,
T. V.
, 2000, “
Liquid Crystal Measurements of Heat Transfer and Surface Shear Stress
,”
Meas. Sci. Technol.
0957-0233,
11
, pp.
969
986
.
21.
Schultz
,
D. L.
, and
Jones
,
T. V.
, 1973, “
Heat Transfer Measurements in Short Duration Hypersonic Facilities
,” NATO Advisory Group Aeronautical RD AGARDograph, 165.
22.
Ekkad
,
S. V.
, and
Han
,
J. -C.
, 2000, “
A Transient Liquid Crystal Thermography Technique for Gas Turbine Heat Transfer Measurements
,”
Meas. Sci. Technol.
0957-0233,
11
, pp.
957
968
.
23.
Hoefler
,
F.
,
Schueren
,
S.
,
von Wolfersdorf
,
J.
, and
Naik
,
S.
, 2009, “
Heat Transfer in a Confined Oblique Jet Impingement Configuration
,”
ASME
Paper No. GT2009-59354.
24.
Poser
,
R.
,
von Wolfersdorf
,
J.
, and
Lutum
,
E.
, 2007, “
Advanced Evaluation of Transient Heat Transfer Experiments Using Thermochromic Liquid Crystals
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
221
, pp.
793
801
.
25.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
, 2006,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
26.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
, 1986,
Conduction of Heat in Solids
,
2nd ed.
,
Oxford University Press
,
New York
.
27.
Vogel
,
G.
, and
Weigand
,
B.
, 2001, “
A New Evaluation Method for Transient Liquid Crystal Experiments
,”
35th National Heat Transfer Conference
, Anaheim, CA.
28.
Kobiela
,
B.
,
Lauffer
,
D.
, and
Weigand
,
B.
, 2010, “
On the Assumption of Transient 1D Heat Conduction in Walls With Convective Heat Transfer Analytical Methods and Limitations
,”
13th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
, Honolulu, HI, Paper No. 2010-16.
29.
Moffat
,
R. J.
, 1988, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
0894-1777,
1
, pp.
3
17
.
You do not currently have access to this content.