Large-eddy simulations are used to investigate Coriolis forces effect on flow structure and heat transfer in a rotating dimpled channel. Two geometries with two dimple depths are considered, δ=0.2 and 0.3 of channel height, for a wide range of rotation number, Rob=0.00.70, based on mean bulk velocity and channel height. It is found that the turbulent flow is destabilized near the trailing side and stabilized near the leading side, with secondary flow structures generated in the channel under the effect of Coriolis forces. Higher heat transfer levels are obtained at the trailing surface of the channel, especially in regions of flow reattachment and boundary layer regeneration at the dimple surface. Coriolis forces showed a stronger effect on the flow structure for the shallow dimple geometry (δ=0.2) compared with the deeper dimple where the growth and shrinkage of the flow recirculation zone in the dimple cavity with rotation were more pronounced than the deep dimple geometry (δ=0.3). Under the action of rotation, heat transfer augmentation increased by 57% for δ=0.2 and by 70% for δ=0.3 on the trailing side and dropped by 50% for δ=0.2 and by 45% for δ=0.3 on the leading side from that of the stationary case.

1.
Ligrani
,
P. M.
,
Oliveira
,
M. M.
, and
Blaskovich
,
T.
, 2003, “
Comparison of Heat Transfer Augmentation Techniques
,”
AIAA J.
0001-1452,
41
(
3
), pp.
337
362
.
2.
Wagner
,
J. H.
,
Johnson
,
B. V.
, and
Hajek
,
T. J.
, 1991, “
Heat Transfer in Rotating Passages With Smooth Walls and Radial Outward Flow
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
42
51
.
3.
Wagner
,
J. H.
,
Johnson
,
B. V.
, and
Kopper
,
F. C.
, 1991, “
Heat Transfer in Rotating Serpentine Passages With Smooth Walls
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
321
330
.
4.
Johnson
,
B. V.
,
Wagner
,
J. H.
,
Steuber
,
G. D.
, and
Yeh
,
F. C.
, 1994, “
Heat Transfer in Rotating Serpentine Passages With Trips Skewed to the Flow
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
113
123
.
5.
El-Husayni
,
H. A.
,
Taslim
,
M. E.
, and
Kercher
,
D. M.
, 1994, “
Experimental Heat Transfer Investigation of Stationary and Orthogonally Rotating Asymmetric and Symmetric Heated and Turbulated Channels
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
124
132
.
6.
Parsons
,
J. A.
,
Han
,
J. -C.
, and
Zhang
,
Y.
, 1995, “
Effects of Model Orientation and Wall Heating Condition on Local Heat Transfer in a Rotating Two-Pass Square Channel With Rib Turbulators
,”
Int. J. Heat Mass Transfer
0017-9310,
38
(
7
), pp.
1151
1159
.
7.
Griffith
,
T. S.
,
Al-Hadhrami
,
L.
, and
Han
,
J. C.
, 2002, “
Heat Transfer in Rotating Rectangular Channels (AR=4) With Angled Ribs
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
617
625
.
8.
Al-Hadhrami
,
L.
, and
Han
,
J. C.
, 2003, “
Effect of Rotation on Heat Transfer in Tow-Pass Square Channels With Five Different Orientations of 45° Angled Rib Turbulators
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
653
669
.
9.
Sewall
,
E. A.
, and
Tafti
,
D. K.
, 2008, “
Large Eddy Simulation of Flow and Heat Transfer in the Developing Flow Region of a Rotating Gas Turbine Blade Internal Cooling Duct With Coriolis and Buoyancy Forces
,”
ASME J. Turbomach.
0889-504X,
130
(
1
), p.
011005
.
10.
Abdel-Wahab
,
S.
, and
Tafti
,
D. K.
, 2004, “
Large Eddy Simulations of Flow and Heat Transfer in a 90° Ribbed Duct With Rotation—Effect of Coriolis and Centrifugal Buoyancy Forces
,”
ASME J. Turbomach.
0889-504X,
126
(
4
), pp.
627
636
.
11.
Afanasyev
,
N. V.
,
Chudnovsky
,
Ya. P.
,
Leontiev
,
A. I.
, and
Roganov
,
P. S.
, 1993, “
Turbulent Flow Friction and Heat Transfer Characteristics for Spherical Cavities on a Flat Plate
,”
Exp. Therm. Fluid Sci.
0894-1777,
7
, pp.
1
8
.
12.
Moon
,
H. K.
,
O'Connel
,
T.
, and
Glezer
,
B.
, 2000, “
Channel Height Effect on Heat Transfer and Friction in a Dimpled Passage
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
307
313
.
13.
Ligrani
,
P. M.
,
Harrison
,
J. L.
,
Mahmood
,
G. I.
, and
Hill
,
M. L.
, 2001, “
Flow Structure Due to Dimple Depressions on a Channel Surface
,”
Phys. Fluids
1070-6631,
13
(
11
), pp.
3442
3451
.
14.
Mahmood
,
G. I.
, and
Ligrani
,
P. M.
, 2002, “
Heat Transfer in a Dimpled Channel: Combined Influences of Aspect Ratio, Temperature Ratio, Reynolds Number, and Flow Structure
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
2011
2020
.
15.
Won
,
S. Y.
,
Zhang
,
Q.
, and
Ligrani
,
P. M.
, 2005, “
Comparisons of Flow Structure Above Dimpled Surfaces With Different Dimple Depths in a Channel
,”
Phys. Fluids
1070-6631,
17
(
4
), p.
045105
.
16.
Ligrani
,
P. M.
,
Mahmood
,
G. I.
,
Harrison
,
J. L.
,
Clayton
,
C. M.
, and
Nelson
,
D. L.
, 2001, “
Flow Structure and Local Nusselt Number Variation in a Channel With Dimples and Protrusions on Opposite Walls
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
4413
4425
.
17.
Mahmood
,
G. I.
,
Sabbagh
,
M. Z.
, and
Ligrani
,
P. M.
, 2001, “
Heat Transfer in a Channel With Dimples and Protrusions on Opposite Walls
,”
J. Thermophys. Heat Transfer
0887-8722,
15
(
3
), pp.
275
283
.
18.
Elyyan
,
M. A.
,
Rozati
,
A.
, and
Tafti
,
D. K.
, 2008, “
Investigation of Dimpled Fins for Heat Transfer Enhancement in Compact Heat Exchangers
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
2950
2966
.
19.
Griffith
,
T. S.
,
Al-Hadrami
,
L.
, and
Han
,
J. C.
, 2003, “
Heat Transfer in Rotating Rectangular Cooling Channels (AR=4) With Dimples
,”
ASME J. Turbomach.
0889-504X,
125
(
3
), pp.
555
563
.
20.
Elyyan
,
M. A.
, and
Tafti
,
D. K.
, 2010, “
Effect of Coriolis Forces in a Rotating Channel With Dimples and Protrusions
,”
Int. J. Heat Fluid Flow
0142-727X,
31
, pp.
1
18
.
21.
Elyyan
,
M. A.
, and
Tafti
,
D. K.
, 2008, “
Effect of Coriolis Forces in a Rotating Channel With Dimples and Protrusions
,”
ASME
Paper No. IMECE2008-66677.
22.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
, 1991, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids
1070-6631,
3
, pp.
1760
1765
.
23.
Moin
,
P.
,
Squires
,
K.
,
Cabot
,
W.
, and
Lee
,
S.
, 1991, “
A Dynamic Sub-Grid-Scale Model for Compressible Turbulence and Scalar Transport
,”
Phys. Fluids A
0899-8213,
3
(
11
), pp.
2746
2757
.
24.
Zhang
,
L. W.
,
Tafti
,
D. K.
,
Najjar
,
F. M.
, and
Balachander
,
S.
, 1997, “
Computations of Flow and Heat Transfer in Parallel-Plate Fin Heat Exchangers on the CM-5: Effects of Flow Unsteadiness and Three-Dimensionality
,”
Int. J. Heat Mass Transfer
0017-9310,
40
, pp.
1325
1341
.
25.
Cui
,
J.
, and
Tafti
,
D. K.
, 2002, “
Computations of Flow and Heat Transfer in a Three-Dimensional Multilouvered Fin Geometry
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
5007
5023
.
26.
Viswanathan
,
A. K.
, and
Tafti
,
D. K.
, 2005, “
Detached Eddy Simulation of Turbulent Flow and Heat Transfer in Ribbed Duct
,”
ASME J. Fluids Eng.
0098-2202,
127
, pp.
888
896
.
27.
Sewall
,
E. A.
,
Tafti
,
D. K.
,
Graham
,
A. B.
, and
Thole
,
K. A.
, 2006, “
Experimental Validation of Large Eddy Simulation of Flow and Heat Transfer in a Stationary Ribbed Duct
,”
Int. J. Heat Fluid Flow
0142-727X,
27
(
2
), pp.
243
258
.
28.
Tafti
,
D. K.
, 2001, “
GenIDLEST—A Scalable Parallel Computational Tool for Simulating Complex Turbulent Flows
,”
Proceedings of the ASME Fluid Engineering Division
, FED-Vol.
256
,
ASME
,
New York
.
29.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
, 2002,
Fundamentals of Heat and Mass Transfer
,
5th ed.
,
Wiley
,
New York
.
You do not currently have access to this content.