In the present study, a two-pass internal cooling channel with engine-similar cross-sections was investigated numerically. The channel featured a trapezoidal inlet pass, a sharp 180 deg bend, and a nearly rectangular outlet pass. Calculations were done for a configuration with smooth walls and walls equipped with 45 deg skewed ribs at a Reynolds number of . The present study focused on the effect of rotation on fluid flow and heat transfer. The investigated rotation numbers were and 0.10. The computations were performed by solving the Reynolds-averaged Navier–Stokes equations (Reynolds-averaged Navier–Stokes method) with the commercial finite-volume solver FLUENT using a low-Re shear stress transport (SST) turbulence model. The numerical grids were block-structured hexahedral meshes generated with POINTWISE. Flow field measurements were independently performed at German Aerospace Centre Cologne using particle image velocimetry. In the smooth channel, rotation had a large impact on secondary flows. Especially, rotation induced vortices completely changed the flow field. Rotation also changed flow impingement on the tip and the outlet pass sidewall. Heat transfer in the outlet pass was strongly altered by rotation. In contrast to the smooth channel, rotation showed less influence on heat transfer in the ribbed channel. This is due to a strong secondary flow field induced by the ribs. However, in the outlet pass, Coriolis forces markedly affected the rib induced secondary flow field. The influence of rotation on heat transfer was visible in particular in the bend region and in the second pass directly downstream of the bend.
Skip Nav Destination
e-mail: marco.schueler@siemens.com
e-mail: horst-michael.dreher@schulergroup.com
e-mail: martin.elfert@dlr.de
Article navigation
March 2012
Research Papers
Numerical Predictions of the Effect of Rotation on Fluid Flow and Heat Transfer in an Engine-Similar Two-Pass Internal Cooling Channel With Smooth and Ribbed Walls
M. Schüler,
M. Schüler
Institut für Thermodynamik der Luft- und Raumfahrt (ITLR),
e-mail: marco.schueler@siemens.com
Universität Stuttgart
, Pfaffenwaldring 31, D-70569 Stuttgart, Germany
Search for other works by this author on:
H.-M. Dreher,
H.-M. Dreher
Institut für Thermodynamik der Luft- und Raumfahrt (ITLR),
e-mail: horst-michael.dreher@schulergroup.com
Universität Stuttgart
, Pfaffenwaldring 31, D-70569 Stuttgart, Germany
Search for other works by this author on:
S. O. Neumann,
S. O. Neumann
Institut für Thermodynamik der Luft- und Raumfahrt (ITLR),
Universität Stuttgart
, Pfaffenwaldring 31, D-70569 Stuttgart, Germany
Search for other works by this author on:
B. Weigand,
B. Weigand
Institut für Thermodynamik der Luft- und Raumfahrt (ITLR),
Universität Stuttgart
, Pfaffenwaldring 31, D-70569 Stuttgart, Germany
Search for other works by this author on:
M. Elfert
M. Elfert
Institut für Antriebstechnik,
e-mail: martin.elfert@dlr.de
Deutsches Zentrum für Luft- und Raumfahrt (DLR)
, Linder Höhe, D-51147 Köln, Germany
Search for other works by this author on:
M. Schüler
Institut für Thermodynamik der Luft- und Raumfahrt (ITLR),
Universität Stuttgart
, Pfaffenwaldring 31, D-70569 Stuttgart, Germanye-mail: marco.schueler@siemens.com
H.-M. Dreher
Institut für Thermodynamik der Luft- und Raumfahrt (ITLR),
Universität Stuttgart
, Pfaffenwaldring 31, D-70569 Stuttgart, Germanye-mail: horst-michael.dreher@schulergroup.com
S. O. Neumann
Institut für Thermodynamik der Luft- und Raumfahrt (ITLR),
Universität Stuttgart
, Pfaffenwaldring 31, D-70569 Stuttgart, Germany
B. Weigand
Institut für Thermodynamik der Luft- und Raumfahrt (ITLR),
Universität Stuttgart
, Pfaffenwaldring 31, D-70569 Stuttgart, Germany
M. Elfert
Institut für Antriebstechnik,
Deutsches Zentrum für Luft- und Raumfahrt (DLR)
, Linder Höhe, D-51147 Köln, Germanye-mail: martin.elfert@dlr.de
J. Turbomach. Mar 2012, 134(2): 021021 (10 pages)
Published Online: June 30, 2011
Article history
Received:
August 4, 2010
Revised:
August 28, 2010
Online:
June 30, 2011
Published:
June 30, 2011
Citation
Schüler, M., Dreher, H., Neumann, S. O., Weigand, B., and Elfert, M. (June 30, 2011). "Numerical Predictions of the Effect of Rotation on Fluid Flow and Heat Transfer in an Engine-Similar Two-Pass Internal Cooling Channel With Smooth and Ribbed Walls." ASME. J. Turbomach. March 2012; 134(2): 021021. https://doi.org/10.1115/1.4003086
Download citation file:
Get Email Alerts
Characteristics of Deterministic and Stochastic Unsteadiness of Trailing Edge Cutback Film Cooling Flows
J. Turbomach (January 2025)
Related Articles
Aerothermal Investigations of Mixing Flow Phenomena in Case of Radially Inclined Ejection Holes at the Leading Edge
J. Turbomach (April,2000)
Latticework (Vortex) Cooling Effectiveness: Rotating Channel Experiments
J. Turbomach (July,2005)
Film Cooling From a Row of Holes Supplemented With Antivortex Holes
J. Turbomach (April,2009)
Effect of Jet Pulsing on Film Cooling—Part II: Heat Transfer Results
J. Turbomach (April,2007)
Related Proceedings Papers
Related Chapters
Laminar Fluid Flow and Heat Transfer
Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine
Hydrodynamic Mass, Natural Frequencies and Mode Shapes
Flow-Induced Vibration Handbook for Nuclear and Process Equipment
Control and Operational Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential