High resolution Nusselt number distributions were measured on the blade tip surface of a large, 1.0 m chord, low-speed cascade representative of a high-pressure turbine. Data were obtained at a Reynolds number of 4.0×105 based on exit velocity and blade axial chord. Tip clearance levels ranged from 0.56% to 1.68% design span or equally from 1% to 3% of the blade chord. An infrared camera, looking through the hollow blade, made detailed temperature measurements on a constant heat flux tip surface. The relative motion between the endwall and the blade tip was simulated by a moving belt. The moving belt endwall significantly shifts the region of high Nusselt number distribution and reduces the overall averaged Nusselt number on the tip surface by up to 13.3%. The addition of a suction side squealer tip significantly reduced local tip heat transfer and resulted in a 32% reduction in averaged Nusselt number. Analysis of pressure measurements on the blade airfoil surface and tip surface along with particle image velocimetry velocity flow fields in the gap gives an understanding of the heat transfer mechanism.

1.
Booth
,
T. C.
,
Dodge
,
P. R.
, and
Hepworth
,
H. K.
, 1982, “
Rotor-Tip Leakage: Part 1—Basic Methodology
,”
ASME J. Eng. Power
0022-0825,
104
, pp.
154
161
.
2.
1993, AGARD-AG-328, Advanced Methods for Cascade Testing,
C.
Hirsch
, ed.
3.
Moore
,
J.
, and
Tilton
,
J. S.
, 1987, “
Tip Leakage Flow in a Linear Turbine Cascade
,”
ASME
Paper No. 87-GT-222.
4.
Heyes
,
F. J. G.
, and
Hodson
,
H. P.
, 1991, “
The Effect of Blade Tip Geometry on the Tip Leakage Flow in Axial Turbine Cascades
,”
ASME
Paper No. 91-GT-135.
5.
Bindon
,
J. P.
, 1987, “
Pressure Distributions in the Tip Clearance Region of an Unshrouded Axial Turbine as Affecting the Problem of Tip Burnout
,”
ASME
Paper No. 87-GT-230.
6.
Bindon
,
J. P.
, 1989, “
The Measurement and Formation of Tip Clearance Loss
,”
ASME J. Turbomach.
0889-504X,
111
, pp.
257
263
.
7.
Yaras
,
M. I.
, and
Sjolander
,
S. A.
, 1992, “
Prediction of Tip-Leakage Losses in Axial Turbines
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
204
210
.
8.
Yaras
,
M. I.
, and
Sjolander
,
S. A.
, 1991, “
Effects of Simulated Rotation on Tip Leakage in a Planar Cascade of Turbine Blades, Part I: Tip Gap Flow
,”
ASME
Paper No. 91-GT-127.
9.
Yaras
,
M. I.
,
Sjolander
,
S. A.
, and
Kind
,
R. J.
, 1991, “
Effects of Simulated Rotation on Tip Leakage in a Planar Cascade of Turbine Blades, Part II: Downstream Flow Field and Blade Loading
,”
ASME
Paper No. 91-GT-128.
10.
Palafox
,
P.
,
Oldfield
,
M. L. G.
,
Jones
,
T. V.
, and
LaGraff
,
J.
, 2005, “
PIV Maps of Tip Leakage and Secondary Flow Fields on a Low Speed Turbine Blade Cascade With Moving Endwall
,”
ASME
Paper No. GT2005-68189.
11.
Yamamoto
,
A.
, 1988, “
Interaction Mechanisms Between Tip Leakage Flow and the Passage Vortex in a Linear Turbine Rotor Cascade
,”
ASME J. Turbomach.
0889-504X,
110
, pp.
329
338
.
12.
Yamamoto
,
A.
, 1989, “
Endwall Flow/Loss Mechanisms in a Linear Turbine Cascade With Blade Tip Clearance
,”
ASME J. Turbomach.
0889-504X,
111
, pp.
264
274
.
13.
Mayle
,
R. E.
, and
Metzger
,
D. E.
, 1982, “
Heat Transfer at the Tip of an Unshrouded Turbine Blade
,”
Proceedings of the Seventh International Heat Transfer Conference
, Vol.
3
, pp.
87
92
.
14.
Chyu
,
M. K.
,
Moon
,
H. K.
, and
Metzger
,
D. E.
, 1989, “
Heat Transfer in the Tip Region of Grooved Turbine Blades
,”
ASME J. Turbomach.
0889-504X,
111
, pp.
131
138
.
15.
Srinivasan
,
V.
, and
Goldstein
,
R. J.
, 2003, “
Effect of Endwall Motion on Blade Tip Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
267
273
.
16.
Bunker
,
R. S.
,
Bailey
,
J. C.
, and
Ameri
,
A. A.
, 2000, “
Heat Transfer and Flow on the First-Stage Blade Tip of a Power Generation Gas Turbine: Part 1—Experimental Results
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
263
271
.
17.
Azad
,
G. S.
,
Han
,
J. C.
, and
Teng
,
S.
, 2000, “
Heat Transfer and Pressure Distributions on a Gas Turbine Blade Tip
,”
ASME
Paper No. 2000-GT-194.
18.
Chana
,
K. S.
, and
Jones
,
T. V.
, 2002, “
An Investigation on Turbine Tip and Shroud Heat Transfer
,”
ASME
Paper No. GT-2002-30554.
19.
Thorpe
,
S. J.
,
Yoshino
,
S.
,
Ainsworth
,
R. W.
, and
Harvey
,
N. W.
, 2004, “
An Investigation of the Heat Transfer and Static Pressure on the Over-Tip Casing Wall of an Axial Turbine Operating at Engine Representative Flow Conditions (I) Time-Mean Results
,”
Int. J. Heat Fluid Flow
0142-727X,
25
, pp.
933
944
.
20.
Thorpe
,
S. J.
,
Yoshino
,
S.
,
Ainsworth
,
R. W.
, and
Harvey
,
N. W.
, 2004, “
An Investigation of the Heat Transfer and Static Pressure on the Over-Tip Casing Wall of an Axial Turbine Operating at Engine Representative Flow Conditions (II) Time-Resolved Results
,”
Int. J. Heat Fluid Flow
0142-727X,
25
, pp.
945
960
.
21.
Greenway
,
M. E.
, and
Wood
,
C. J.
, 1979, “
The Oxford University 4 m×2 m Industrial Aerodynamic Wind Tunnel
,”
Journal of Industrial Aerodynamics
,
4
, pp.
43
70
.
22.
Gregory-Smith
,
D. G.
, and
Cleak
,
J. G. E.
, 1992, “
Secondary Flow Measurements in a Turbine Cascade With High Inlet Turbulence
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
173
183
.
You do not currently have access to this content.