Heat flux measurements are presented for the uncooled blades of a one and one-half stage turbine operating at design corrected conditions with a fully cooled upstream vane row and with rotor disk cavity purge flow. This paper highlights the differences in blade heat flux and temperature caused by uniform, radial, and hot streak inlet temperature profiles. A general discussion of temperature profile migration is provided in Part I, and Part III presents data for hot streak magnitudes and alignments. The heat flux and fluid temperature measurements for the blade airfoil, platform, angel wing (near the root), and tip as well as for the stationary outer shroud are influenced by the vane inlet temperature profile. The inlet temperature profile shape can be clearly observed in the blade Stanton number measurements, with the radial and hot streak profiles showing a greater redistribution of energy than the uniform case due to secondary flows. Hot-gas segregation is observed to increase with the strength of the temperature distortion. Measurements for the hot streak profile show a segregation of higher temperature fluid to the pressure surface when compared with a uniform profile. The introduction of vane and purge cooling is found to further accentuate the flow segregation due to coolant migration to the suction surface.

1.
Mathison
,
R. M.
,
Haldeman
,
C. W.
, and
Dunn
,
M. G.
, 2012, “
Aerodynamics and Heat Transfer for a Cooled One and One-Half Stage High-Pressure Turbine–Part I: Vane Inlet Temperature Profile Generation and Migration
,”
ASME J. Turbomach.
0889-504X
134
(
1
), p.
011006
.
2.
Mathison
,
R. M.
,
Haldeman
,
C. W.
, and
Dunn
,
M. G.
, 2010, “
Heat Transfer for the Blade of a Cooled Stage and One-Half High-Pressure Turbine, Part I: Influence of Vane Cooling and Disk Cavity Purge Flow
,”
ASME
Paper No. GT2010-22713.
3.
Mathison
,
R. M.
,
Haldeman
,
C. W.
, and
Dunn
,
M. G.
, 2010, “
Heat Transfer for the Blade of a Cooled One and One-Half Stage High-Pressure Turbine, Part II: Influence of Purge Cooling Variation
,”
ASME
Paper No. GT2010-22715.
4.
Mathison
,
R. M.
,
Haldeman
,
C. W.
, and
Dunn
,
M. G.
, 2012, “
Aerodynamics and Heat Transfer for a Cooled One and One-Half Stage High-Pressure Turbine–Part III: Impact of Hot Streak Characteristics on Blade Row Heat Flux
,”
ASME J. Turbomach.
0889-504X
134
(
1
), p.
011008
.
5.
Munk
,
M.
, and
Prim
,
R. C.
, 1947, “
On the Multiplicity of Steady Gas Flows Having the Same Streamline Pattern
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
33
, pp.
137
141
.
6.
Hawthorne
,
W. R.
, 1951, “
Secondary Circulation in Fluid Flow
,”
Proc. R. Soc. London, Ser. A
0950-1207,
206
, pp.
374
387
.
7.
Lakshminarayana
,
B.
, and
Horlock
,
J. H.
, 1973, “
Generalized Expressions for Secondary Vorticity Using Intrinsic Co-Ordinates
,”
J. Fluid Mech.
0022-1120,
59
(
1
), pp.
97
115
.
8.
Lakshminarayana
,
B.
, 1975, “
Effects of Inlet Temperature Gradients on Turbomachinery Performance
,”
ASME J. Eng. Power
0022-0825,
97
, pp.
64
74
.
9.
Kerrebrock
,
J. L.
, and
Mikolajczak
,
A. A.
, 1970, “
Intra-Stator Transport of Rotor Wakes and Its Effect on Compressor Performance
,”
ASME J. Eng. Power
0022-0825,
92
, pp.
359
368
.
10.
Schwab
,
J. R.
,
Stabe
,
R. G.
, and
Whitney
,
W. J.
, 1983, “
Analytical and Experimental Study of Flow Through an Axial Turbine Stage With a Nonuniform Inlet Radial Temperature Profile
,”
AIAA/SAE/ASME 19th Joint Propulsion Conference
, Seattle, WA, Paper No. AIAA-83-1175.
11.
Stabe
,
R. G.
,
Whitney
,
W. J.
, and
Mofitt
,
T. P.
, 1984, “
Performance of a High-Work Low Aspect Ratio Turbine Tested With a Realistic Inlet Radial Temperature Profile
,”
AIAA/SAE/ASME 20th Joint Propulsion Conference
, Cincinnati, OH, Paper No. AIAA-84-1161 (Report No. NASA TM-83655).
12.
Guenette
,
G. R.
,
Pappas
,
G.
, and
Epstein
,
A. H.
, 1992, “
The Influence of Non-Uniform Spanwise Inlet Temperature on Turbine Rotor Heat Transfer
,”
AGARD-CP-527 Heat Transfer and Cooling in Gas Turbines
, Antalya, Turkey, Paper No. AGARD-CP-527-5.
13.
Shang
,
T.
,
Guenette
,
G. R.
,
Epstein
,
A. H.
, and
Saxer
,
A. P.
, 1995, “
The Influence of Inlet Temperature Distortion on Rotor Heat Transfer in a Transonic Turbine
,”
Joint Propulsion Conference and Exhibit
, San Diego, CA, Paper No. AIAA 95-3042.
14.
Rai
,
M. M.
, and
Dring
,
R. P.
, 1990, “
Navier–Stokes Analyses of the Redistribution of Inlet Temperature Distortions in a Turbine
,”
J. Propul. Power
0748-4658,
6
(
3
), pp.
276
282
.
15.
Rai
,
M. M.
, 1987, “
Navier–Stokes Simulations of Rotor-Interaction Using Patched and Overlaid Grids
,”
J. Propul. Power
0748-4658,
3
(
5
), pp.
387
396
.
16.
Dorney
,
D. J.
,
Davis
,
R. L.
,
Edwards
,
D. D.
, and
Madavan
,
N. K.
, 1992, “
Unsteady Analysis of Hot Streak Migration in a Turbine Stage
,”
J. Propul. Power
0748-4658,
8
(
2
), pp.
520
529
.
17.
Krouthen
,
B.
, and
Giles
,
M. B.
, 1990, “
Numerical Investigation of Hot Streaks in Turbines
,”
J. Propul. Power
0748-4658,
6
(
6
), pp.
769
776
.
18.
Takahashi
,
R. K.
, and
Ni
,
R. H.
, 1990, “
Unsteady Euler Analysis of the Redistribution of an Inlet Temperature Distortion in a Turbine
,”
26th Joint Propulsion Conference
, Orlando, FL, Paper No. AIAA 90-2262.
19.
Sharma
,
O. P.
,
Pickett
,
G. F.
, and
Ni
,
R. H.
, 1990, “
Assessment of Unsteady Flows in Turbines
,”
ASME
Paper No. 90-GT-150.
20.
Ni
,
R. H.
, and
Sharma
,
O. P.
, 1990, Using 3-D Euler Flow Simulations to Assess Effects of Periodic Unsteady Flow Through Turbines, Paper No. AIAA 90-2357.
21.
Saxer
,
A. P.
, and
Giles
,
M. B.
, 1994, “
Predictions of Three-Dimensional Steady and Unsteady Inviscid Transonic Stator/Rotor Interaction With Inlet Radial Temperature Nonuniformity
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
347
357
.
22.
Shang
,
T.
, and
Epstein
,
A. H.
, 1997, “
Analysis of Hot Streak Effects on Turbine Rotor Heat Load
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
544
553
.
23.
Dorney
,
D. J.
, and
Schwab
,
J. R.
, 1996, “
Unsteady Numerical Simulations of Radial Temperature Profile Redistribution in a Single-Stage Turbine
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
783
791
.
24.
Dorney
,
D. J.
, and
Sondak
,
D. L.
, 2000, “
Effects of Tip Clearance on Hot Streak Migration in a High-Subsonic Single-Stage Turbine
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
613
620
.
25.
Zhao
,
Q. J.
,
Wang
,
H. S.
,
Zhao
,
X. L.
, and
Xu
,
J. Z.
, 2007, “
Numerical Investigation on the Influence of Hot Streak Temperature Ratio in a High-Pressure Stage of Vaneless Counter-Rotating Turbine
,”
Int. J. Rotating Mach.
1023-621X,
2007
, p.
56097
.
26.
Joslyn
,
H. D.
, and
Dring
,
R. P.
, 1988, “
A Trace Gas Technique to Study Mixing in a Turbine Stage
,”
ASME J. Turbomach.
0889-504X,
110
(
1
), pp.
38
43
.
27.
Molter
,
S. M.
,
Dunn
,
M. G.
,
Haldeman
,
C. W.
,
Bergholz
,
R. F.
, and
Vitt
,
P.
, 2006, “
Heat-Flux Measurements and Predictions for the Blade Tip Region of a High-Pressure Turbine
,”
ASME
Paper No. GT2006-90048.
28.
Green
,
B. R.
,
Barter
,
J. W.
,
Haldeman
,
C. W.
, and
Dunn
,
M. G.
, 2004, “
Time Averaged and Time Accurate Aerodynamics for the Recessed Tip Cavity of a High Pressure Turbine Blade and the Outer Stationary Shroud: Comparison of Computational and Experimental Results
,”
ASME
Paper No. GT2004-53443.
29.
Haldeman
,
C. W.
,
Mathison
,
R. M.
,
Dunn
,
M. G.
,
Southworth
,
S.
,
Harral
,
J. W.
, and
Heitland
,
G.
, 2008, “
Aerodynamic and Heat Flux Measurements in a Single Stage Fully Cooled Turbine–Part II: Experimental Results and CFD Comparison
,”
ASME J. Turbomach.
0889-504X,
130
, p.
021016
.
30.
Haldeman
,
C. W.
,
Mathison
,
R. M.
,
Dunn
,
M. G.
,
Southworth
,
S.
,
Harral
,
J. W.
, and
Heitland
,
G.
, 2008, “
Aerodynamic and Heat Flux Measurements in a Single Stage Fully Cooled Turbine–Part I: Experimental Approach
,”
ASME J. Turbomach.
0889-504X,
130
, p.
021015
.
You do not currently have access to this content.