The effect of film-cooling holes placed along the span of a fully cooled high pressure turbine blade in a stationary, linear cascade on film-cooling effectiveness is studied using the pressure sensitive paint technique. The effect of showerhead injection at the leading edge and the presence of compound angled, diffusing holes on the pressure and suction sides are also examined. Six rows of compound angled shaped film-cooling holes are provided on the pressure side while four such rows are provided on the suction side of the blade. The holes have a laidback and fan-shaped diffusing cross-section. Another three rows of cylindrical holes are drilled at a typical angle on the leading edge to capture the effect of showerhead film coolant injection. The film-cooling hole arrangement simulates a typical film cooled blade design used in Stage 1 rotor blades for gas turbines used for power generation. An optimal target blowing ratio is defined for each film hole row, and tests are performed for 100%, 150%, and 200% of this target value. Tests are performed for inlet Mach numbers of 0.36 and 0.45 with corresponding exit Mach numbers of 0.51 and 0.68, respectively. The flow remains subsonic in the throat region for both Mach numbers. The corresponding freestream Reynolds numbers, based on the axial chord length and the exit velocity, are 1.3×106 and 1.74×106, respectively. Freestream turbulence intensity level at the cascade inlet is 6%. The results show that varying blowing ratios can have a significant impact on film-cooling effectiveness distribution. Large spanwise variations in effectiveness distributions are also observed. Similar distributions were observed for both Mach numbers.

1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
, 2001,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor & Francis
,
New York
, Chaps. 2 and 3.
2.
Dring
,
R. P.
,
Blair
,
M. F.
, and
Hoslyn
,
H. D.
, 1980, “
An Experimental Investigation of Film Cooling on a Turbine Rotor Blade
,”
ASME J. Eng. Power
0022-0825,
102
, pp.
81
87
.
3.
Takeishi
,
K.
,
Aoki
,
S.
,
Sato
,
T.
, and
Tsukagoshi
,
K.
, 1992, “
Film Cooling on a Gas Turbine Rotor Blade
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
828
834
.
4.
Abhari
,
R. S.
, and
Epstein
,
A. H.
, 1994, “
An Experimental Study of Film Cooling in a Rotating Transonic Turbine
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
63
70
.
5.
Nirmalan
,
N. V.
, and
Hylton
,
L. D.
, 1990, “
An Experimental Study of Turbine Vane Heat Transfer With Leading Edge and Downstream Film Cooling
,”
ASME J. Turbomach.
0889-504X,
112
, pp.
477
487
.
6.
Abuaf
,
N.
,
Bunker
,
R.
, and
Lee
,
C. P.
, 1997, “
Heat Transfer and Film Cooling Effectiveness in a Linear Airfoil Cascade
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
302
309
.
7.
Camci
,
C.
, and
Arts
,
T.
, 1985, “
Experimental Heat Transfer Investigation Around the Film Cooled Leading Edge of a High Pressure Gas Turbine Rotor Blade
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
107
, pp.
1016
1021
.
8.
Camci
,
C.
, and
Arts
,
T.
, 1991, “
Effect of Incidence on Wall Heating Rates and Aerodynamics on a Film Cooled Transonic Turbine Blade
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
493
500
.
9.
Goldstein
,
R. J.
, and
Chen
,
H. P.
, 1985, “
Film Cooling on a Gas Turbine Blade Near the Endwall
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
107
, pp.
117
122
.
10.
Drost
,
U.
, and
Bolcs
,
A.
, 1999, “
Investigation of Detailed Film Cooling Effectiveness and Heat Transfer Distributions on a Gas Turbine Airfoil
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
233
242
.
11.
Mehendale
,
A. B.
,
Ekkad
,
S. V.
, and
Han
,
J. C.
, 1994, “
Mainstream Turbulence Effect on Film Effectiveness and Heat Transfer Coefficient of a Gas Turbine Blade With Air and CO2 Film Injection
,”
Int. J. Heat Mass Transfer
0017-9310,
37
, pp.
2707
2714
.
12.
Ou
,
S.
, and
Han
,
J. C.
, 1994, “
Unsteady Wake Effect on Film Effectiveness and Heat Transfer Coefficient From a Turbine Blade With One Row of Air and CO2 Film Injection
,”
ASME J. Heat Transfer
0022-1481,
116
, pp.
921
928
.
13.
Mehendale
,
A. B.
,
Han
,
J. C.
,
Ou
,
S.
, and
Lee
,
C. P.
, 1994, “
Unsteady Wake Over a Linear Turbine Blade Cascade With Air and CO2 Film Injection. Part II: Effect on Film Effectiveness and Heat Transfer Distributions
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
730
737
.
14.
Ekkad
,
S. V.
,
Mehendale
,
A. B.
,
Han
,
J. C.
, and
Lee
,
C. P.
, 1997, “
Combined Effect of Grid Turbulence and Unsteady Wake on Film Effectiveness and Heat Transfer Coefficient of a Gas Turbine Blade With Air and CO2 Film Injection
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
594
600
.
15.
Du
,
H.
,
Han
,
J. C.
, and
Ekkad
,
S. V.
, 1998, “
Effect of Unsteady Wake on Detailed Heat Transfer Coefficient and Film Effectiveness Distributions for a Gas Turbine Blade
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
808
817
.
16.
Ames
,
F. E.
, 1998, “
Aspects of Vane Film Cooling With High Turbulence. Part I: Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
768
776
.
17.
Ames
,
F. E.
, 1998, “
Aspects of Vane Film Cooling With High Turbulence. Part II: Adiabatic Effectiveness
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
776
786
.
18.
Teng
,
S.
,
Sohn
,
D. K.
, and
Han
,
J. C.
, 2000, “
Unsteady Wake Effect on Film Temperature and Effectiveness Distributions for a Gas Turbine Blade
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
340
347
.
19.
Heidmann
,
J. D.
,
Lucci
,
B. L.
, and
Reshotko
,
E.
, 2001, “
An Experimental Study of the Effect of Wake Passing on Turbine Blade Film Cooling
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
214
221
.
20.
Mhetras
,
S. P.
, and
Han
,
J. C.
, 2006, “
Effect of an Unsteady Wake on Full Coverage Film Cooling
,” Paper No. AIAA 2006.
21.
Cutbirth
,
J. M.
, and
Bogard
,
D. G.
, 2002, “
Thermal Field and Flow Visualization Within the Stagnation Region of a Film Cooled Turbine Vane
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
200
206
.
22.
Cutbirth
,
J. M.
, and
Bogard
,
D. G.
, 2003, “
Effect of Coolant Density Ratio on Film Cooling Performance on a Vane
,”
ASME
Paper No. GT-2003-38582.
23.
Teng
,
S.
, and
Han
,
J. C.
, 2000, “
Effect of Film-Hole Shape on Turbine Blade Heat Transfer Coefficient Distribution
,” Paper No. AIAA-2000-1035.
24.
Furukawa
,
T.
, and
Ligrani
,
P. M.
, 2002, “
Transonic Film Cooling Effectiveness From Shaped Holes on a Simulated Turbine Airfoil
,”
J. Thermophys. Heat Transfer
0887-8722,
16
(
2
), pp.
228
237
.
25.
Schneider
,
M.
,
Parneix
,
S.
, and
Wolfersdorf
,
J.
, 2003, “
Effect of Showerhead Injection on Superposition of Multi-Row Pressure Side Film Cooling With Fan-Shaped Holes
,”
ASME
Paper No. GT-2003-38693.
26.
Waye
,
S. K.
, and
Bogard
,
D. G.
, 2006, “
High Resolution Film Cooling Effectiveness Comparison of Axial and Compound Angle Holes on the Suction Side of a Turbine Vane
,”
ASME
Paper No. GT2006-90225.
27.
Wright
,
L. M.
,
Gao
,
Z.
,
Varvel
,
T. A.
, and
Han
,
J. C.
, 2005, “
Assessment of Steady State PSP, TSP and IR Measurement Techniques for Flat Plate Film Cooling
,”
ASME
Paper No. HT-2005-72363.
28.
Gao
,
Z.
,
Wright
,
L. M.
, and
Han
,
J. C.
, 2005, “
Assessment of Steady State PSP and Transient IR Measurement Techniques for Leading Edge Film Cooling
,” Paper No. IMECE-2005-80146.
29.
McLachlan
,
B.
, and
Bell
,
J.
, 1995, “
Pressure-Sensitive Paint in Aerodynamic Testing
,”
Exp. Therm. Fluid Sci.
0894-1777,
10
, pp.
470
485
.
30.
Coleman
,
H. W.
, and
Steele
,
W. G.
, 1989,
Experimentation and Uncertainty Analysis for Engineers
,
Wiley
,
New York
, Chaps. 3 and 4.
31.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
, 1998, “
Discharge Coefficient Measurements of Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
0889-504X,
120
(
3
), pp.
557
563
.
You do not currently have access to this content.